«МОСКОВСКАЯ НЕГОСУДАРСТВЕННАЯ ЭКСПЕРТИЗА СТРОИТЕЛЬНЫХ ПРОЕКТОВ» (ООО «Мосэксперт»)

 Свидетельство об аккредитации на право проведениянегосударственной экспертизы проектной документации и (или)
негосударственной экспертизы результатов инженерных изысканий
№ POCC RU.0001.610055; № POCC RU.0001.610244
«УТВЕРЖДАЮ»
Заместитель генералнного директора

ПОЛОЖИТЕЛЬНОЕ ЗАКЛЮЧЕНЙЕ НЕГОСУДАРСТВЕННОЙ ЭКСПЕРТИЗЫ

$$
4-1-1-0174-15
$$

Объект капитального строительства:
Жилой комплекс. 1 очередь 2 и 4 этапы
(жилые дома IV.03, IV.05-IV.09, детское дошкольное учреждение IV. 10 внутриплощадочные инженерные сети и сооружения) по адресу: Московская область, Солнечногорский муниципальный район, сельское поселение Кутузовское, д. Рузино.

Объект негосударственной экспертизы:

Проектная документация без сметы и результаты инженерных изысканий

Предмет негосударственной экспертизы:

Оценка соответствия техническим регламентам

ПОЛОЖИТЕЛЬНОЕ ЗАКЛЮЧЕНИЕ ЭКСПЕРТИЗЫ

 по проектной документации на строительство и результатам инженерных изысканий
1. Общие положения

1.1. Основания для проведения экспертизы

Заявление о проведении экспертизы ООО «Кутузовское-1» от 30 марта 2015 года № НЗ 03/15-286.

Договор на проведение экспертизы от 01 апреля 2015 года № 1302МЭ.
1.2. Идентификационные сведения об объекте капитального стро-

ительства

Наименование объекта: жилой комплекс. 1 очередь 2 и 4 этапы (жилые дома IV.03, IV. 05 - IV.09, детское дошкольное учреждение IV.10; внутриплощадочные инженерные сети и сооружения).

Строительный адрес: Московская область, Солнечногорский муниципальный район, сельское поселение Кутузовское, д. Рузино.

1.3. Источник финансирования: средства инвесторов.

1.4. Основные технико-экономические характеристики объекта капитального строительства с учетом его вида, функционального назначения и характерных особенностей

Площадь участка (по ГПЗУ), га
92,3321
Площадь участка 1 очереди, га
21,6163
Площадь участка 1 очереди 2 этапа, га
7,4961
(жилые дома IV.03, IV. 05 - IV. 09 , дошкольная
образовательная организация IV.10, TП11 IV.13, TП18 III.20, TП21 III.21)

Площадь застройки, кв.м
Количество этажей

Количество секций

Строительный объём, куб.м, в т.ч.
надземный
подземный
$\begin{array}{ll}\text { Общая площадь здания, кв.м, в т.ч. } 30921 \\ \text { надземная } & 29639\end{array}$ $29639 \quad 32870$
1282

Kopnyc IV. 05
2763
13-15

+ подвал +цокольный этаж

7
150788
130333
20455
34157
1287
Общая площадь нежилыхпомещений 1-го этажа, кв.моднокомнатных793
Общая площадь квартир
(лоджии с коэф. 0,5), кв.м
Количество квартир, в т.ч. (лоджии с коэф. 0,5), кв.м
Количество квартир, в т.ч. 20483
208двухкомнатных428
трехкомнатныхквартир для МГН16146
13Kopnyc IV. 06
Площадь застройки, кв.мКоличество этажей412
$17+$ подвал Строительный объём, куб.м, в т.ч. 24732
надземный
подземный 22867
Общая площадь здания, кв.м, в т.ч. 1865 1865 6167
надземная5817
подземная 350
Общая площадь нежилых
Общая площадь нежилых помещений 1-го этажа, кв.м
Общая площадь квартир
(лоджии с коэф. 0,5), кв.м
228
228

49Количество квартир, в т.ч.403880
однокомнатных 16двухкомнатных64Kopnyc IV. 08412
$17+$ подвал Количество этажей 24683$\begin{array}{lr}\text { Строительный объём, куб.м, в т.ч. } \begin{array}{r}17+\text { подвал } \\ \text { надземный }\end{array} & 24683 \\ \text { подземннй } & 22834\end{array}$22834
подземный 1849
Общая площадь здания, кв.м, в т.ч. 6159
надземная 5809
подземная
подземная 350
Общая площадь нежилыходнокомнатных
Kopnyc IV. 09 $17+$ подвал 23963

$$
350
$$помещений 1-го этажа, кв.мОбщая площадь квартир219

$$
49
$$(лоджии с коэф. 0,5), кв.мКоличество квартир, в т.ч.

4038 4209
80
двухкомнатных 1664

1110

$$
22610
$$

$$
241
$$

$$
230
$$

$$
180
$$

$$
48
$$

$$
9
$$

Kopnyc IV. 07 417
$17+$ подвал 23991 22128 1863
6188
5838
350

4209
83
17 415
22128
1835

$$
6188
$$

$$
5838
$$

83
17
64

Корпус IV. 10 дошкольная образовательная организачия (ДОО)

	Локальные очистные сооружения поверхностных сточных вод ЛОС (V.II)	Распределительная трансформаторная подстаниия РТП2 (V.III)
Площадь застройки, кв.м	16,30	86,00
Количество этажей	1	1
Строительный объём, куб.м	47,00	350,00
Общая площадь здания, кв.м	13,38	75,92

Водозаборный узел (V.I)
Площадь участка 1 очереди 4 этапа проектирования водозаборного узла (V.I), га 0,2896
Площадь застройки, кв.м 556,35
Количество этажей
Строительный объём, куб.м
1
Общая площадь здания, кв.м
3100,00
507,00

	TП 13	TП12	TП16
Площадь застройки, кв.м	28,00	23,00	28,00
Количество этажей	1	1,	1
Строительный объём, куб.м	109,30	95,50	109,30

1.5. Идентификационные сведения о лицах, осуществивших подготовку проектной документации и выполнивших инженерные изыскания
 Проектная организачия: ООО «СПиЧ».
 Место нахождения: 197022, город Санкт-Петербург, пр. Медиков, дом 5, лит. «В», пом. 7Н.
 Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства от 31 мая 2014 года № 0111.8-2010-7707701973-П-30, выдано СРО НП «Межрегиональный Союз Проектировщиков».
 Главный архитектор проекта: Членов И.В.
 Главный инженер проекта: Макухин А.B.

Субподрядные организачии:
ООО «Метрополис».
Место нахождения: 129085, город Москва, улица Годовикова, дом 9, стр. 2.

Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства от 10 октября 2013 года № П-2.0155/07, выдано СРО НП «Гильдия архитекторов и проектировщиков».

ОАО «Институт по проектированию промышленных и транспортных объектов для городского хозяйства г. Москвы «Моспромпроект».

Место нахождения: 125047, город Москва, улица 1-я Брестская, дом 27.

Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства от 17 июля 2013 года № 0971-2014-7710964267-П-3, выдано СРО НП «Гильдия архитекторов и проектировщиков».

ООО «Строительное управление-17».
Место нахождения: 141840, Московская область, Дмитровский район, город Яхрома, улица Советская, дом 1.

Свидетельство о допуске к определенному виду или видам, которые оказывают влияние на безопасность объектов капитального строительства от 26 сентября 2012 года № П-3-12-0880, выдано СРО НПІ «Объединение градостроительного планирования и проектирования».

ООО «Научно-производственная фирма Инженерная экология».
Место нахождения: 125167, город Москва, Ленинградский проспект, дом 37 , корп. 9, офис 619.

Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства от 23 ноября 2012 года № П-01-0087-23112012, выдано СРО НП «Межрегиональная Ассоциация по Проектированию и негосударственной Экспертизе».

ООО «Новый Свет».
Место нахождения: 1252845, город Москва, улица Беговая, дом 32.
Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства от 27 марта 2012 года № П.037.77.6032.03.2012, выдано СРО НП «Объединение инженеров проектировщиков».

OOO «CK MEPA».
Место нахождения: 190013, город Санкт-Петербург, улица Рузовская, дом 21, лит. А.

Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объекта капитального строительства от 21 марта 2012 года № СРОСП-П-00868.1-21032012, выдано НП СРО «Стандарт-Проект».

АО «Научно-исследовательский центр «Строительство», НИЦ «Строительство».

Место нахождения: 141367, Московская область, СергиевоПосадский район, пос. Загорские Дали.

Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства от 30 марта 2015 года № ПТ-06-0025-5042109739-2015, выдано НП СРО «Межрегиональное объединение проектных организаций «ОборонСтройПроект».

ООО «Труд-Центр».
Место нахождения: 127055, город Москва, улица Лесная, дом 43.
Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства от 04 октября 2012 года № СРО-П-1027739633635-2010-0163.03, выдано СРО НПП «Проектирование инженерных систем зданий и сооружений».

ООО «ВТМ дорпроект СТОЛИЦА».
Место нахождения: 115054, город Москва, улица Большая Пионерская, дом 15 , стр. 1.

Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строи-

тельства от 03 февраля 2012 года № 0052.04-2009-7705826261-П-077, выдано СРО НП дорожных проектных организаций «РОДОС».

ООО «ИНГРАД проект».
Место нахождения: 125171, город Москва, Ленинградское шоссе, дом 8 , корпуус 3 .

Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства от 06 февраля 2013 года № СРО-П-1127746069076-2012-0345.03, выдано СРО НП «Проектирование инженерных систем зданий и сооружений».

ООО «Партнер-Эко».
Место нахождения: 115035, город Москва, улица Садовническая, дом 72 , строение 1 , офис 6 .

Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства от 07 июля 2012 года № 0138.01-2009-7719567641-П-29, выдано НП СРО Национальное объединение научно-исследовательских и проект-но-изыскательских организаций.

OOO «Стэллс Строй».
Место нахождения: 115093, город Москва, улица Люсиновская, дом 15.

Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства от 20 декабря 2012 года № П-2.0227/02, выдано СРО НП «Гильдия архитекторов и проектировщиков».

Изыскательские организачии:

ООО «Моспроект 7».
Место нахождения: 115093, город Москва, 1-й Щепковский переулок, дом 3.

Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства от 11 февраля 2014 года № СРОСИ-И-01622.1-11022014, выдано СРО НП инженеров-изыскателей «Стандарт-Изыскания».

ООО «Гео Плюс Проект».
Место нахождения: 129926, город Москва, Рижский проезд, дом 3, стр. 1.

Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства от 10 августа 2012 года № 01-И-№ 0021-2, выдан НПП «АИИС».

Свидетельство оценки соответствия испытательной лаборатории

ООО «Гео Плюс Проект» № СД-112, выдано 12 ноября 2012 года ЗАО «СОЮЗДОРНИИ».

Amтестат аккредитации испытательной лаборатории (центра) OOO «ИнжГеоПроект» № POCC.RU.0001.518162, сроком действия с 02 декабря 2010 года по 02 декабря 2015 года, выдан Федеральным агентством по техническому регулированию и метрологии.

Государственное предприятие Московской области «АрхитектурноПланировочное Управление» по Солнечногорскому району.

Место нахождения: 141500, Московская область, город Солнечногорск, улица Красная, дом 103/2.

Свидетельство о допуске к определенному виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства от 16 декабря 2009 года СРО № 01-И №198, выдано НП «Центризыскания».

1.6. Идентификационные сведения о заявителе, застройщике, заказчике

Застройшик, заказчик: ООО «Кутузовское-1».
Место нахождения: 141544, Московская область, Солнечногорский район, поселок санатория «ЭНЕРГИЯ», дом 4, комната 5.

1.7. Состав результатов инженерных изысканий

Технический отчет об инженерно-геологических изысканиях на объекте: «Строительство локальных очистных сооружений ливневого стока по адресу: МО, Солнечногорский р-н, с.п. Кутузовское, д. Рузино». ООО «Гео Плюс Проект», 2013 год.

Технический отчет об инженерно-геологических условиях на площадке строительства ВЗУ по адресу: Московская область, Солнечногорский рон, с/п. Кутузовское, д. Рузино. ООО «Моспроект 7», 2014 год.

Технический отчет об инженерно-геологических изысканиях на площадке строительства РТП по адресу: Московская область, Солнечногорский р-он, с. п. Кутузовское, д. Рузино. ООО «Моспроект 7», 2014 год.

Технический отчет о проведении инженерно-геодезических изысканий для выполнения проектных работ по объекту: «Жилой комплекс, строительство 2 -го и 4 -го этапов 1 -ой очереди» по адресу: Московская область, Солнечногорский район, с.п. Кутузовское, дер. Рузино. ГП МО «АПУ» по Солнечногорскому району. 2014 год.

1.8. Состав проекта

Перечень рассмотренных разделов проектной документаиии:

Раздел 1. Пояснительная записка.

1.1. Жилые дома IV.03, IV.05, IV. 06 - IV.09. Детское дошкольное учреждение на 216 мест IV.10.
1.2. Водозаборный узел производительностью 3000 куб.м./сут.
1.3. І очередь строительства очистных сооружении.

Раздел 2. Схема планировочной организации земельного участка.
2.1. Жилые дома IV.03, IV.05, IV. 06 - IV.09. Детское дошкольное учреждение на 216 мест IV.10.
2.2. Водозаборный узел производительностью 3000 куб.м./сут.
2.3. І очередь строительства очистных сооружений.

Раздел 3. Архитектурные решения.
3.1. Планировки типовых секций.
3.2. Многоэтажный жилой дом секционного типа С14-T2 корпус IV. 03 .
3.3. Многоэтажный жилой дом секционного типа С15-T2 корпус IV. 05 .
3.4. Многоэтажные жилые дома башенного типа C17-T2 корпуса IV. 06 - IV. 09.
3.5. Детское дошкольное учреждение на 216 мест IV.10.
3.7. Водозаборный узел производительностью 3000 куб.м./сут.
3.8. I очередь строительства очистных сооружений.
3.9. Распределительная трансформаторная подстанция РТП $10 / 0,4$ кВ.

Раздел 4. Конструктивные и объемно-планировочные решения.
4.1. Многоэтажные жилые дома секционного типа С14-T2 корпус IV. 03 и C15-T2 корпус IV. 05.
4.2. Многоэтажные жилые дома башенного типа C17-T2 корпуса IV. 06 - IV. 09 .
4.3. Детское дошкольное учреждение на 216 мест IV.10.
4.5. Водозаборный узел производительностью 3000 куб.м./сут.
4.6. I очередь строительства очистных сооружений.
4.7. Распределительная трансформаторная подстанция РТП $10 / 0,4$ кВ.

Раздел 5. Сведения об инженерном оборудовании, о сетях инженернотехнического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений.

Подраздел 5.1. Система электроснабжения.
5.1.1. Силовое электрооборудование. Электроосвещение. Молниезащита и заземление. Многоэтажные жилые дома секционного типа С14-T2 корпус IV. 03 и C15-T2 корпус IV. 05 .
5.1.2. Силовое электрооборудование. Электроосвещение. Молниезащита и заземление. Многоэтажные жилые дома башенного типа С17-T2 корпуса IV. 06 - IV. 09.
5.1.3. Силовое электрооборудование. Электроосвещение. Молниезащита и заземление. Детское дошкольное учреждение на 216 мест IV.10.
5.1.5. Трансформаторные подстанции $10 / 0,4$ кВ.
5.1.6. Внутриплощадочные сети электроснабжения $0,4 \mathrm{\kappa B}, 10$ кВ.
5.1.7. Наружное освещение.
5.1.8. Водозаборный узел производительностью 3000 куб.м./сут. Система электроснабжения.
5.1.9. І очередь строителвства очистных сооружений. Система электроснабжения.
5.1.10. Распределительная трансформаторная подстанция РТП 10/0,4 кВ. Электротехнические решения.

Подраздел 5.2. Система водоснабжения.
5.2.1. Системы внутреннего хозяйственно-питьевого водоснабжения. Многоэтажные жилые дома секционного типа C14-T2 корпус IV. 03 и C15T2 корпус IV. 05.
5.2.2. Системы внутреннего хозяйственно-питьевого водоснабжения. Многоэтажные жилые дома башенного типа C17-T2 корпуса IV. 06 - IV. 09.
5.2.3. Системы внутреннего хозяйственно-питьевого водоснабжения. Детское дошкольное учреждение на 216 мест IV.10.
5.2.5. Противопожарный водопровод. Многоэтажные жилые дома секционного типа C14-T2 корпус IV. 03 и C15-T2 корпус IV. 05.
5.2.6. Противопожарный водопровод. Многоэтажные жилые дома башенного типа C17-T2 корпуса IV. 06 - IV. 09.
5.2.7. Противопожарный водопровод. Детское дошкольное учреждение на 216 мест IV.10.
5.2.9. Внутриплощадочные сети хозяйственно-питьевого и противопожарного водоснабжения.
5.9.10. Водозаборный узел производительностью 3000 куб.м./сут. Система водоснабжения.

Подраздел.5.3. Система водоотведения.
5.3.1. Системы внутреннего водоотведения. Многоэтажные жилые дома секционного типа C14-T2 корпус IV. 03 и C15-T2 корпус IV.05.
5.3.2. Системы внутреннего водоотведения. Многоэтажные жилые дома башенного типа C17-T2 корпуса IV. 06 - IV. 09.
5.3.3. Системы внутреннего водоотведения. Детское дошкольное учреждение на 216 мест IV.10.
5.3.5. Внутриплощадочные сети водоотведения. Канализационная насосная станция.
5.3.6. Водозаборный узел производительностью 3000 куб.м./сут. Система водоотведения.

Подраздел.5.4. Отопление, вентиляция, кондиционирование воздуха, тепловые сети.
5.4.1. Отопление, вентиляция и кондиционирование воздуха. Многоэтажные жилые дома секционного типа C14-T2 корпус IV. 03 и C15-T2 корпус IV. 05.
5.4.2. Отопление, вентиляция и кондиционирование воздуха. Многоэтажные жилые дома башенного типа С17-T2 корпуса IV. 06 - IV. 09.
5.4.3. Отопление, вентиляция и кондиционирование воздуха. Детское дошкольное учреждение на 216 мест IV.10.
5.4.5. Противодымная вентиляция. Многоэтажные жилые дома секционного типа C14-T2 корпус IV. 03 и C15-T2 корпус IV. 05 .
5.4.6. Противодымная вентиляция. Многоэтажные жилые дома башенного типа C17-T2 корпуса IV. 06 - IV. 09.
5.4.7. Противодымная вентиляция. Детское дошкольное учреждение на 216 мест IV. 10.
5.4.9. Индивидуальный тепловой пункт. Тепломеханическая часть. Электрооборудование. Автоматизация. Многоэтажные жилые дома секционного типа C14-T2 корпус IV. 03 и C15-T2 корпус IV. 05.
5.4.10. Индивидуальный тепловой пункт. Тепломеханическая часть. Электрооборудование. Автоматизация. Многоэтажные жилые дома башенного типа C17-T2 корпуса IV. 06 - IV. 09.
5.4.11. Индивидуальный тепловой пункт. Тепломеханическая часть. Электрооборудование. Автоматизация. Детское дошкольное учреждение на 216 мест IV. 10.
5.4.12. Водозаборный узел производительностью 3000 куб.м./сут. Отопление, вентиляция и кондиционирование воздуха, тепловые сети.

Подраздел.5.5. Сети связи.
5.5.1. Системы связи. Многоэтажные жилые дома секционного типа C14-T2 корпус IV. 03 и C15-T2 корпус IV. 05 .
5.5.2. Системы связи. Многоэтажные жилые дома башенного типа C17-T2 корпуса IV. 06 - IV. 09.
5.5.3. Системы связи. Детское дошкольное учреждение на 216 мест IV. 10.
5.5.5. Системы безопасности. Многоэтажные жилые дома секционного типа C14-T2 корпус IV. 03 и C15-T2 корпус IV.05.
5.5.6. Системы безопасности. Многоэтажные жилые дома башенного типа C17-T2 корпуса IV. 06 - IV. 09.
5.5.7. Системы безопасности. Детское дошкольное учреждение на 216 мест IV.10.
5.5.9. Система пожарной сигнализации. Система оповещения о пожаре и управления эвакуацией. Многоэтажные жилые дома секционного типа C14-T2 корпус IV. 03 и С15-T2 корпус IV. 05.
5.5.10. Система пожарной сигнализации. Система оповещения о пожаре и управления эвакуацией. Многоэтажные жилые дома башенного типа C17-T2 корпуса IV. 06 - IV. 09.
5.5.11. Система пожарной сигнализации. Система оповещения о пожаре и управления эвакуацией. Детское дошкольное учреждение на 216 мест IV.10.
5.5.13. Внутриплощадочные сети связи.
5.5.14. Водозаборный узел производительностью 3000 куб.м./сут. Сети связи.
5.5.15. I очередь строительства очистных сооружений. Сети связи.

Подраздел 5.6. Автоматизация инженерного оборудования и систем здания.
5.6.1. Автоматизация и диспетчеризация инженерных систем здания. Многоэтажные жилые дома секционного типа C14-T2 корпус IV. 03 и C15T2 корпус IV. 05.
5.6.2. Автоматизация и диспетчеризация инженерных систем здания. Многоэтажные жилые дома башенного типа С17-T2 корпуса IV. 06 - IV. 09.
5.6.3. Автоматизация и диспетчеризация инженерных систем здания. Детское дошкольное учреждение на 216 мест IV.10.
5.6.5. Автоматизированная система управления системы противопожарной защиты. Многоэтажные жилые дома секционного типа С14-T2 корпус IV. 03 и C15-T2 корпус IV. 05.
5.6.6. Автоматизированная система управления системы противопожарной защиты. Многоэтажные жилые дома башенного типа С17-T2 корпуса IV. 06 - IV. 09.
5.6.7. Автоматизированная система управления системы противопожарной защиты. Детское дошкольное учреждение на 216 мест IV.10.

Подраздел 5.7. Технологические решения.
5.7.1. Технологические решения нежилых помещений для Многоэтажных жилых домов башенного типа C17-T2 корпуса IV. 06 - IV. 09.
5.7.2. Технологические решения нежилых помещений для Многоэтажных жилых домов секционного типа C14-T2 корпус IV. 03 и C15-T2 корпус IV.05.
5.7.4. Технологические решения Детского дошкольного учреждения на 216 мест IV. 10.
5.7.5. Водозаборный узел производительностью 3000 куб.м/сут. Texнологические решения.
5.7.6. I очередь строительства очистных сооружений. Технологические решения.

Раздел 6. Проект организации строительства.
6.1. Жилые дома IV.03, IV.05, IV.06-IV.09. Детского дошкольного учреждения на 216 мест IV. 10.
6.2. Водозаборный узел производительностью 3000 куб.м/сут.
6.3. I очередь строительства очистных сооружений.

Раздел 8. Перечень мероприятий по охране окружающей среды.
8.1. Жилые дома IV.03, IV.05, IV.06-IV.09. Детское дошкольное учреждение на 216 мест IV. 10.
8.2. Водозаборный узел производительностью 3000 куб.м/сут.
8.3. I очередь строительства очистных сооружений.
8.4. I очередь строительства очистных сооружений. Обоснование расчетной СЗЗ.

Раздел 9. Мероприятия по обеспечению пожарной безопасности.
9.1. Мероприятия по обеспечению пожарной безопасности. Архитек-турно-планировочные решения. Противодымная защита здания. Ж/д IV.03.
9.2. Мероприятия по обеспечению пожарной безопасности. Архитек-турно-планировочные решения. Противодымная защита здания. Ж/д IV.05.
9.3. Мероприятия по обеспечению пожарной безопасности. Архитек-турно-планировочные решения. Противодымная защита здания. Ж/д IV.06.
9.4. Мероприятия по обеспечению пожарной безопасности. Архитек-турно-планировочные решения. Противодымная защита здания. Ж/д IV.07.
9.5. Мероприятия по обеспечению пожарной безопасности. Архитек-турно-планировочные решения. Противодымная защита здания. Ж/д IV.08.
9.6. Мероприятия по обеспечению пожарной безопасности. Архитек-турно-планировочные решения. Противодымная защита здания. Ж/д IV.09.
9.7. Мероприятия по обеспечению пожарной безопасности. Архитек-турно-планировочные решения. Противодымная защита здания. Детское дошкольное учреждение на 216 мест IV. 10 .
9.9. Водозаборный узел производительностью 3000 куб.м./сут. Мероприятия по обеспечению пожарной безопасности.
9.10. I очередь строительства очистных сооружений.

Раздел 10. Мероприятия по обеспечению доступа инвалидов.
10.1. Многоэтажные жилые дома секционного типа С14-T2 корпус IV. 03 и C15-T2 корпус IV. 05.
10.2. Многоэтажные жилые дома башенного типа С17-Т2 корпуса IV. 06 - IV. 09.
10.3. Детское дошкольное учреждение на 216 мест IV. 10 .
10.5. Водозаборный узел производительностью 3000 куб.м./сут.

Раздел 10.1. Мероприятия по обеспечению соблюдения требований энергетической эффективности и требований оснащенности зданий, строений и сооружений приборами учета используемых энергетических ресурсов.
10.1.1. Многоэтажные жилые дома секционного типа С14-T2 корпус IV. 03 и C15-T2 корпус IV. 05.
10.1.2. Многоэтажные жилые дома башенного типа С17-Т2 корпуса IV. 06 - IV. 09.
10.1.3. Детское дошкольное учреждение на 216 мест IV.10.
10.1.5. Водозаборный узел производительностью 3000 куб.м./сут.

Раздел 12. Иная документация, предусмотренная федеральными законами, в т.ч.:
12.1. Проект организации дорожного движения на период строительства. Проект организации дорожного движения на период эксплуатации.
12.2. Инсоляция и естественное освещение.
12.3. Требования по обеспечению безопасной эксплуатации зданий и сооружений.
12.3.1. Жилые дома IV.03, IV.05, IV.06-IV.09. Детское дошкольное учреждение на 216 мест IV. 10
12.3.2. Водозаборный узел производительностью 3000 куб.м./сут.
12.4. Коллектор ручья Безымянный.
12.4.1. Пояснительная записка.
12.4.2. Проект планировки территории трассы.
12.4.3. Технологические и конструктивные решения. Искусственные сооружения.
12.4.4. Проект организации строительства.

1.9. Иные сведения

Развитие и застройка всей территории жилого комплекса предполагается четырьмя очередями. Согласно заданию на разработку проектной документации 1 -й очереди строительства жилого комплекса, утвержденному Инвестором-заказчиком ООО «Кутузовское-1» проектирование ведется в пять этапов:

1 этап - многоэтажный многоквартирный жилой дом секционного типа - корпус IV. 01 ; многоэтажный многоквартирный жилой дом секционного типа - корпус IV.02; многоэтажный многоквартирный жилой дом секционного типа - корпус IV.04;

2 этап - многоэтажный многоквартирный жилой дом секционного типа - корпус IV 03; многоэтажный многоквартирный жилой дом секционного типа - корпус IV.05; многоэтажный многоквартирный жилой дом башенного типа - корпус IV.06; многоэтажный многоквартирный жилой дом башенного типа - корпус IV.07; многоэтажный многоквартирный жилой дом башенного типа - корпус IV.08; многоэтажный многоквартирный жилой дом башенного типа - корпус IV.09; детское дошкольное учреждение на 190 мест - корпус IV.10; многоярусная открытая автостоянка на 1276 м/М с автомойкой - корпус III.15;

3 этап - общеобразовательное школьное учреждение на 1325 мест с плоскостными спортивными сооружениями - корпус III.12;

4 этап - внеплощадочные инженерные сети; комплекс отдельно стоящих инженерных сооружений; внутриплощадочные инженерные сети и сооружения; проект улично-дорожной сети в границах участка ОС1;

5 этап - проект улично-дорожной сети в границах участка для 1 -ой очереди строительства.

Данное заключение рассматривает 2 и 4 этагыы проектирования первой очереди (жилые дома IV.03, IV. 05 - IV.09, детское дошкольное учреждение IV.10; внутриплощадочные инженерные сети и сооружения). Трансформаторные подстанции TП13 (IV.11), TП12 (IV.12) и TП16 (IV.14) расположены на территории 1 -го этапа 1 очереди строительства, их площадь застройки и вертикальная планировка рассмотрена на 1 этапе 1 очереди. Объемно-планировочные, конструктивные и инженерные решения ТП18 (III.20) рассматриваются на последующем этапе проектирования.

Ввод в эксплуатацию - после подключения к сетям инженернотехнического обеспечения.

В соответствии с п. 1.10 задания на разработку проектной документации 1 -ая очередь строительства жилого комплекса, утвержденному Инве-стором-заказчиком ООО «Кутузовское-1» строительство и ввод в эксплуатацию выполняется поэтапно: 1 этап: Многоэтажный секционный жилой

дом (IV.04), инженерные сооружения (КНС бытовой канализации, ЛОС поверхностных сточных вод, ВЗУ, РТП и др.); 2 этап: 2 Многоэтажных жилых дома башенного типа (IV.06, IV.07); 3 этап: 2 Многоэтажных жилых дома башенного типа (IV.08, IV.09); 4 этап: Многоэтажный секционный жилой дом (IV.01); 5 этап: Многоэтажный секционный жилой дом (IV.02); 6 этап: Многоэтажный секционный жилой дом (IV.03); 7 этап: Многоэтажный секционный жилой дом (IV.05); 8 этап: Детское дошкольное учреждение на 216 мест (IV. 10); 9 этап: Многоярусная открытая автостоянка на 1276 м/м (III.15); 10 этап: Общеобразовательное школьное учреждение на 1325 мест (III. 12). Внутриплощадочные сети строятся и вводятся в эксплуатацию поэтапно в соответствии с графиком строительства зданий 1 -ой очереди строительства.

Результаты инженерно-геологических изысканий первого и второго этапов проектирования 1 очереди (жилые дома) и результаты инженерноэкологических изысканий на весь участок строительства жилого комплекса по адресу: Московская область, Солнечногорский муниципальный район, сельское поселение Кутузовское, д. Рузино рассмотрены ООО «Научнотехнический центр «Промбезопасность-Оренбург» (свидетельство об аккредитации № POCC RU.0001.610041, № POCC RU.0001.610045) - положительное заключение от 10 октября 2013 года № 1-1-1-0422-13.

Проектная документация на строительство жилого комплекса (1 очередь 1 этап - жилые дома IV.01, IV.02, IV.04) по адресу: Московская область, Солнечногорский муниципальный район, сельское поселение Кутузовское, д. Рузино рассмотрена ООО «Мосэксперт» - положительное заключение от 22 ноября 2013 года дело $653-\mathrm{M}$ /13 (регистрационный номер 2-1-1-0653-13).

Проектная документачия согласована:

- Застройщиком ООО «Кутузовское-1» - письмо от 15 марта 2015 года № H3 03/15-28.

2. Основания для выполнения инженерных изысканий, разработки проектной документации

2.1. Основания для выполнения инженерных изысканий

- договор на выполнение инженерно-геологических изысканий от 04 июля 2013 года № 38-07-13, заключенный между ООО «Гео Плюс Проект» и ООО «Научно-производственная фирма Инженерная экология»;
- техническое задание, утвержденное заказчиком ООО «Научнопроизводственная фирма Инженерная экология», на производство инже-нерно-геологических изысканий для строительства зданий и сооружений. Объект и адрес: 1-я очередь строительства очистных сооружений по адресу: М.О., Солнечногорский район, с/п Кутузовское, дер. Рузино;
- договор на выполнение инженерно-геологических изысканий от 26 июня 2014 года № 16/06/14, заключенный между ООО «Моспроект 7» и ООО «Кутузовское-1»;
- техническое задание, утвержденное заказчиком ООО «Кутузовское1», на инженерно-геологические работы. Объект и адрес: ВЗУ по адресу: Московская область, Солнечногорский р-н, с/п Кутузовское, дер. Рузино;
- техническое задание, утвержденное заказчиком ООО «Кутузовское$1 »$, на инженерно-геологические работы. Объект и адрес: Участок строительства РТП по адресу: Московская область, Солнечногорский р-н, с/п Кутузовское, дер. Рузино;
- программа на инженерно-геологические работы разработана ООО «Гео Плюс Проект» в 2013 году;
- программа на инженерно-геологические работы разработана ООО «Моспроект 7» в 2014 году;
- на инженерно-геологические работы получено Согласование (регистрация) программы выполнения инженерно-геологических изысканий от 06 августа 2014 года № 659, выданное ГП МО «Мособлгеотрест»;
- договор на выполнение инженерно-геодезических изысканий, заключенный между ГП МО«АПУ» по Солнечногорскому району и ООО «Кутузовское-1» от 07 апреля 2014 года № 50:09/GEO;
- техническое задание к договору на выполнение инженерногеодезических изысканий, согласованное заказчиком ООО «Кутузовское$1 » ;$
- программа работ на выполнение инженерно-геодезических изысканий.

2.2. Основания для разработки проектной документации

- Постановление Правительства Московской области «О включении земельного участка в границы д. Рузино сельского поселения Кутузовское Солнечногорского муниципального района» от 24 ноября 2010 года № 1031/56;
- Постановление Главы муниципального образования сельского поселения Кутузовское Солнечногорского муниципального района Московской области «Об утверждении проекта планировки территории для размещения объектов жилищного строительства и инфраструктуры на земельном участке кадастровым номером 50:09:0070603:35, общей площадью 923321 кв.м, принадлежащем на праве собственности Обществу с ограниченной ответственностью (далее ООО) «Кутузовское-1», расположенном по адресу: Московская область. Солнечногорский район, с.п. Кутузовское, д. Рузино» от 29 декабря 2012 года № 414;
- градостроительный план № RU50531306-097-13 земельного участка (кадастровые номера участков: 50:09:0070603:578, 50:09:0070603:579, 50:09:0070603:582, 50:09:0070603:581, 50:09:0070603:580, 50:09:0070603:558), утвержденный Постановлением Главы муниципально-

го образования сельского поселения Кутузовское Солнечногорского муниципального района от 30 апреля 2013 года № 131;

- свидетельство о государственной регистрации права собственности на земельный участок с кадастровым номером 50:09:0070603:578 от 22 апреля 2013 года 50-AE№ 197257;
- свидетельство о государственной регистрации права собственности на земельный участок с кадастровым номером 50:09:0070603:579 от 22 апреля 2013 года 50-AE№ 197254;
- свидетельство о государственной регистрации права собственности на земельный участок с кадастровым номером 50:09:0070603:582 от 24 апреля 2013 года 50 -АД№ 960721 ;
- задание на разработку проектной документации для архитектурностроительного объекта гражданского назначения 1 -ой очереди строительства жилого комплекса, утвержденное Инвестором-заказчиком ООО «Ку-тузовское-1» в 2013 году и согласованное Начальником Солнечногорского управления социальной защиты населения;
- Лицензия Департамента по недропользованию по Центральному федеральному округу на пользование недрами от 10 октября 2013 года № МСК 05063 ВП;
- согласование Главы администрации МОСП Кутузовское предварительного размещения точки сброса очищенного ливневых стоков в реку Горетовку по согласованию с администрацией с.п. Кутузовское - печать на листе «Схема планировочной организации участка»;
- технические условия от 04 февраля 2014 года № 34-08/1579-4425, выданы ОАО «МОЭСК» на электроснабжение объекта;
- технические условия от 04 апреля 2013 года № 21-0680/13, выданы АО «Мосводоканал» на водоснабжение и канализование;
- технические условия от 25 декабря 2013 года № 13-10/3554, выданы Филиалом № 10 «Зеленоградский» ОАО «МОЭК» на теплоснабжение объекта.
- технические условия от 19 марта 2014 года № 09/05/4524-14, выданы ОАО «Ростелеком» МРФ «Москва» московский филиал на телефонизацию и передачу данных, радиофикацию, телевидение.

3. Описание результатов инженерных изысканий

3.1. Сведения о выполненных видах, составе и объеме работ и методах выполнения инженерных изысканий

Инженерно-геологические изыскания.
Изыскания по договору № 38-07-13 выполнялись ООО «Гео Плюс Проект» в июле-сентябре 2013 года на участок строительства локальных очистных сооружений ливневых стоков (ЛОС) 4 -го этапа 1-ой очереди. В ходе изысканий были выполнены следующие виды и объемы работ:

- сбор, обработка, анализ и использование фондовых материалов в пределах территории участка проектируемого строительства;
- пробурено 6 скважин глубиной 10,0 м каждая, 6 скважин глубиной

12,0 м каждая, 6 скважин глубиной 15,0 м каждая; общий объем буровых работ составил 222 п.м.;

- проведено статическое зондирование грунтов в 9 точках на глубину до 11,8 м;
- отобраны пробы грунта для лабораторных исследований: 48 монолитов; 20 образцов нарушенной структуры; 3 пробы для определения коррозионной агрессивности грунта по отношению к алюминиевой и свинцовой оболочкам кабеля, к углеродистой стали, а также к бетону; 3 пробы воды на химический анализ;

Abstract

- выполнены определения прочностных и деформационных характеристик грунтов, в том числе: испытания методом одноплоскостного среза 15 опытов; испытания методом компрессионного сжатия - 14 опытов; - камеральная обработка материалов и составление технического отчета.

Изыскания по договору № 16/06/14 выполнялись ООО «Моспроект 7» в июле - августе 2014 года на участок строительства водозаборного узла (ВЗУ) и распределительной трансформаторной подстанұии (РТП) 4-го этапа 1 -ой очереди. В ходе изысканий были выполнены следующие виды и объемы работ:

- сбор, обработка, анализ и использование фондовых материалов в пределах территории участка проектируемого строительства;
- пробурено 3 скважины глубиной 12,0 м каждая, 2 скважины глубиной 15,0 м каждая, 1 скважина глубиной $20,0 \mathrm{~m}, 3$ скважины глубиной 25,0 м каждая; общий объем буровых работ составил 161 п.м.;
- проведено статическое зондирование грунтов в 7 точках на глубину до 17,0 м;
- отобраны пробы грунта для лабораторных исследований: 10 монолитов; 13 образцов нарушенной структуры; 1 проба для определения коррозионной агрессивности грунта по отношению к алюминиевой и свинцовой оболочкам кабеля, к углеродистой стали, а также к бетону; 1 проба воды на химический анализ;
- выполнены определения прочностных и деформационных характеристик грунтов, в том числе: испытания методом одноплоскостного среза 7 опытов; испытания методом компрессионного сжатия - 7 опытов;
- камеральная обработка материалов и составление технического отчета.

Результаты инженерно-геологических изысканий первого и второго этапов проектирования 1 очереди (жилые дома) жилого комплекса по адресу: Московская область, Солнечногорский муниципальный район, сельское поселение Кутузовское, д. Рузино рассмотрены ООО «Научнотехнический центр «Промбезопасность-Оренбург» (свидетельство об аккредитации № POCC RU.0001.610041, № POCC RU.0001.610045) - положительное заключение от 10 октября 2013 года № 1-1-1-0422-13.

Инженерно-экологические изысскания

Результаты инженерно-экологических изысканий на весь участок строительства жилого комплекса по адресу: Московская область, Солнечногорский муниципальный район, сельское поселение Кутузовское, д. Рузино рассмотрены ООО «Научно-технический центр «ПромбезопасностьОренбург» (свидетельство об аккредитации № POCC RU.0001.610041, № POCC RU.0001.610045) - положительное заключение от 10 октября 2013 года № 1-1-1-0422-13.

Инженерно-геодезические изыскания
В ходе проведения изысканий в апреле 2014 года были выполнены следующие виды работ:

- создание планово-высотного обоснования;
- топографическая съемка участков М 1:500-103 га;
- нанесение линий градостроительного регулирования;
- камеральная обработка результатов полевых измерений;
- составление технического отчета по результатам инженерногеодезических изысканий.

Abstract

3.2. Инженерно-геологические, экологические условия территории, на которой предполагается осуществлять строительство объекта капитального строительства, с указанием наличия, распространения и проявления геологических и инженерно-геологических процессов

Инженерно-геологические условия на территории проектируемого строительства.

Согласно техническому отчету, разработанному ООО «Гео Плюс Проект» в 2013 году на участок строительства локальных очистных сооружений ливневых стоков (ЛОС) 4 -го этапа 1 -ой очереди.

В геоморфологическом отношении территория объекта приурочена к Клинско-Дмитровской возвышенности. Участок работ располагается на склоне речной долины, образованной в позднеплейстоценовое время. Северная часть площадки, где проектируются очистные сооружения, имеет уклон в восточном направлении в сторону р. Горетовка. Южная часть площадки, где проектируется коллектор, имеет выраженный уклон в сторону русла ручья, впадающего в р. Горетовка. Поверхностный сток имеет направление в сторону вышеупомянутой реки и ее притока. В районе одной скважины территория перекрыта насыпным грунтом. Абсолютные отметки поверхности земли на участке работ колеблются в пределах 173,0 $187,0 \mathrm{~m}$.

Климат района работ умеренно-континентальный и характеризуется следующими основными показателями: среднегодовая температура $4,1^{\circ} \mathrm{C}$, осадки - 201-465 мм, абсолютная минимальная температура воздуха $-42^{\circ} \mathrm{C}$, абсолютная максимальная температура воздуха $+38^{\circ} \mathrm{C}$.

Сейсмичность района работ - менее 6 баллов.

На основании материалов, полученных в результате бурения, в геологическом строении обследованной территории до разведанной глубины 15,0 м принимают участие (сверху вниз): современные техногенные образования ($\mathrm{t} \mathrm{Q}_{\mathrm{IV}}$), верхнечетвертичные покровные отложения ($\mathrm{pr} \mathrm{Q}_{\mathrm{III}}$), озерноболотные отложения ($\mathrm{lb}_{\mathrm{III}}$), аллювиальные отложения ($\mathrm{a} \mathrm{Q}_{\text {III }}$) и среднечетвертичные ледниковые отложения московской морены ($\mathrm{gQ}_{\mathrm{Il}}{ }^{\mathrm{ms}}$).

Современные техногенные образования ($\mathrm{t} \mathrm{Q}_{\mathrm{IV}}$) встречены только в одной скважине, представлены неоднородной смесью глинистых грунтов, с включением дресвы, щебня, мощностью 2,0 м. Верхнечетвертичные покровные отложения ($\mathrm{pr} \mathrm{Q}_{\mathrm{III}}$) встречены почти во всех скважинах и представлены глинами коричневого цвета, полутвердой до тугопластичной консистенции, мощностью $0,8-3,2$ м. Верхнечетвертичные озерноболотные отложения ($\mathrm{lbQ}_{\mathrm{III}}$) вскрыты в нескольких скважинах и представлены суглинками, темно-серыми, мягкопластичными до текучепластичных, мощностью $2,2-5,8$ м. Верхнечетвертичные аллювиальные отложения ($\mathrm{a}_{\mathrm{III}}$) встречены на глубине $1,1-8,9$ м и представлены песками средней крупности, коричневого цвета, средней плотности, рыхлыми и плотными, маловлажными и водонасыщенными, а также песками гравелистыми, коричневыми, рыхлыми и плотными, водонасыщенными, с включениями дресвы и щебня, вскрытой мощностью до 3,2 м. Среднечетвертичные ледниковые отложения московской морены ($\mathrm{gQ}_{\Pi}{ }^{\mathrm{ms}}$) залегают под аллювиальными песками на глубине $5,8-11,5$ м, представлены суглинками, тем-но-коричневыми, тугопластичными, с включениями дресвы, щебня, вскрытой мощностью $0,8-10,1$ м.

На момент изысканий (июль 2013 года) гидрогеологические условия участка характеризуются наличием одного водоносного горизонта. Уровень подземных вод вскрыт на глубине $0,2-5,4$ м (абсолютные отметки 186,9-174,25 м. Воды безнапорные, водовмещающими породами являются покровные глины, озерно-болотные суглинки и аллювиальные пески, водоупором являются среднечетвертичные моренные суглинки.

Коэффициент фильтрации грунтов: для глин (ИГЭ-2) и суглинков (ИГЭ-3) - 0,01; для песков средней крупности (ИГЭ-4) - 5,0; для песков гравелистых (ИГЭ-5) - 20,0 м/сут.

Подземные воды горизонта по коррозионным свойствам характеризуются: к бетону - неагрессивны, по отношению к арматуре железобетонных конструкций - неагрессивны; агрессивность вод к свинцовой и алюминиевой оболочкам кабеля - средняя.

Исследуемая территория отнесена к подтопленной.
По результатам выполненных инженерно-геологических работ в геологическом разрезе территории проектируемого строительства выделено 9 инженерно-геологических элементов (ИГЭ):

ИГЭ-1	Насыпной грунт $\left(\mathrm{tQ}_{\mathrm{IV}}\right) ;$
ИГЭ-2	Глина полутвердая-тугопластичная (prQ $\left.{ }_{\mathrm{III}}\right) ;$
ИГЭ-3	Суглинок мягкопластичный-текучепластичный $\left(\mathrm{lbQ}_{\mathrm{III}}\right) ;$

ИГЭ-4 Песок средней крупности, средней плотности, маловлажный и водонасыщенный ($\mathrm{aQ}_{\text {шI }}$);

ИГЭ-4а Песок средней крупности, рыхлый, маловлажный и водонасыщенный (aQ ${ }_{\text {III }}$);

ИГЭ-4б Песок средней крупности, плотный, маловлажный и водонасыщенный ($\mathrm{aQ}_{\mathrm{III}}$);

ИГЭ-5a Песок гравелистый, рыхлый, водонасыщенный ($\mathrm{aQ}_{\mathrm{III}}$);
ИГЭ-5б Песок гравелистый, плотный, водонасыщенный ($\mathrm{a} \mathrm{Q}_{\text {III }}$);
ИГЭ-6 Суглинок полутвердый $\left(\mathrm{gQ}_{\mathrm{II}}^{\mathrm{ms}}\right)$.
Коррозионная агрессивность грунтов по отношению к алюминиевой оболочке кабеля - высокая, к свинцовой - средняя, к стали - высокая; по отношению к бетону и к железобетонным конструкциям грунты неагрессивны.

Нормативная глубина сезонного промерзания составляет для: насыпных грунтов (ИГЭ-1) - 1,95 м; глин (ИГЭ-2) и суглинков (ИГЭ-3) $-1,32$ м; песков средней крупности (ИГЭ-4) - 1,75 м.

По степени морозной пучинистости грунты, залегающие в зоне сезонного промерзания, представленные насыпными грунтами (ИГЭ-1), оцениваются как слабопучинистые; глины (ИГЭ-2) - среднепучинистые; суглинки (ИГЭ-3) - сильнопучинистые; песков средней крупности (ИГЭ-4) практически непучинистые.

Территория отнесена к неопасной в отношении проявления карстовосуффозионных процессов.

По инженерно-геологическим условиям территория проектируемого строительства относится к III (сложной) категории.

Согласно техническим отчетам, разработанным ООО «Моспроект 7» в 2014 году на участок строительства водозаборного узла (ВЗУ) и распределительной трансформаторной подстанции (РТП) 4-го этапа 1-ой очереди.

В геоморфологическом отношении территория объекта приурочена к Угорско-Шернинской остаточно-холмистой моренной равнине. Территория с уклоном в северном направлении. Абсолютные отметки поверхности составляют 177,0-190,0 м.

Климат района работ умеренно-континентальный и характеризуется следующими основными показателями: средняя годовая температура воздуха $+3,8^{\circ} \mathrm{C}$; абсолютный минимум $-43^{\circ} \mathrm{C}$; абсолютный максимум $+36^{\circ} \mathrm{C}$; количество осадков за год - 630 мм. Преобладающее направление ветра: зимой (январь) - юго-западное; весной (апрель) - южное; летом (июль) -северо-западное; осенью (октябрь) - юго-западное. Среднегодовая скорость ветра $0-3,8 \mathrm{~m} / \mathrm{c}$. Продолжительность безморозного периода 220 суток, продолжительность неблагоприятного периода - с 20 октября по 5 мая (6,5 месяцев).

Сейсмичность района работ - менее 5 баллов.

На основании материалов, полученных в результате бурения, в геологическом строении обследованной территории до разведанной глубины 25,0 м принимают участие (сверху вниз): почвенно-растительный слой ($\mathrm{p} \mathrm{Q}_{\mathrm{IV}}$), современные болотные отложения ($\mathrm{b} \mathrm{Q}_{\mathrm{IV}}$), верхнечетвертичные покровные отложения ($\mathrm{prQ} \mathrm{QIII}^{\text {}}$), верхнечетвертичные озерные отложения микулинского горизонта ($\mathrm{Q}_{\mathrm{III}}{ }^{\text {mik }}$), среднечетвертичные отложения московского горизонта ($\mathrm{f}, \mathrm{lg} \mathrm{Q}_{\mathrm{II}}^{\mathrm{ms}}$), нижне-среднечетвертичные водноледниковые отложения донско-московского горизонта ($\mathrm{f}, \mathrm{lgQ}_{\mathrm{I}}^{\mathrm{dns}}{ }_{-\mathrm{II}}^{\mathrm{ms}}$), нижнечетвертичные водно-ледниковые отложения донского горизонта ($f, \lg \mathrm{Q}_{\mathrm{I}}^{\mathrm{dns}}$), нижнечетвертичные ледниковые отложения донского горизонта ($\mathrm{gQ}_{\mathrm{I}}{ }^{\mathrm{dns}}$).

Современные болотные отложения ($\mathrm{b} \mathrm{Q}_{\mathrm{IV}}$) вскрыты в долине ручья в двух скважинах и представлены торфом темно-коричневого цвета, средней степени разложения, преимущественно водонасыщенным, вскрытой мощностью 0,1 - 0,3 м. Верхнечетвертичные покровные отложения ($\mathrm{prQ} \mathrm{Q}_{\mathrm{II}}$) вскрыты скважинами преимущественно в равнинной части участка и представлены глинами серо-коричневого цвета, преимущественно полутвердой консистенции, вскрытой мощностью $0,3-0,5$ м. Верхнечетвертнчные озерные отложения микулинского горизонта ($1 \mathrm{Q}_{\mathrm{III}}^{\text {mik }}$) вскрыты преимущественно в долине ручья. Представлены глинами коричнево-серого и серого цвета, преимущественно мягкопластичной консистенции, с частыми прослоями суглинков, с неравномерной примесью органических веществ от слабозаторфованных до сильнозаторфованных, в среднем - средней степени заторфованности. В долине ручья в данных отложениях часто развиты прослои и линзы глин и суглинков текучепластичной консистенции, вскрытой мощностью $0,9-3,5 \mathrm{~m}$. Среднечетвертичные отложения московского горизонта ($f, \operatorname{lgQ_{\mathrm {II}}\mathrm {ms}}$) вскрыты во всех скважинах и представлены суглинками полутвердой, реже твердой консистенции, красновато-коричневого и рыжеватого цвета, слоистыми, с редкими прослойками водонасыщенных песков средней крупности и мелких, с включениями дресвы и щебня до 5$10 \%$, вскрытой мощностью $1,3-5,3$ м. Нижне-среднечетвертичные водноледниковые отложения донско-московского горизонта ($\mathrm{f}, \mathrm{lgQ} \mathrm{Q}^{\mathrm{dns}}{ }_{\text {-II }} \mathrm{ms}$) вскрыты большинством скважин и представлены песками преимущественно средней крупности, желтыми, коричневыми, бежево-коричневыми, серыми, рыхлыми и средней плотности, малой и средней степени водонасыщения, водонасыщенными, с прослоями крупных и гравелистых песков, с включениями гравия, гальки и щебня, вскрытой мощностью $1,7-11,6$ м. Нижнечетвертичные водно-ледниковые отложения донского горизонта
 московского горизонта в среднем с глубин $3,0-12,0$ м. В кровле комплекса нижнечетвертичных водно-ледниковых отложений развиты суглинки красновато-коричневого, буро-коричневого цвета, а также серокоричневые и темно-серые. Все суглинки слоистые, полутвердой консистенции, песчанистые, с прослоями супеси твердой и суглинков твердой консистенции и включениями обломков (дресвы, щебня, гравия) карбонатных пород до 5-10 \%. В скважинах на глубине $15,0-25,0$ м в суглинках

встречались тонкие (1 cm) прослойки торфа. В кровле описываемых отложений, на контакте с водонасыщенными песками, особенно в долине рyчья, повсеместно развиты суглинки тугопластичной консистенции небольшой (вскрытой бурением) мощности $2,8-3,3$ м. Кроме того, на глубинах $7,0-15,0$ м встречены пески мелкие и средней крупности, средней плотности, водонасыщенные, с прослоями гравелистых, вскрытой мощностью $3,0-4,5$ м. Нижнечетвертичные ледниковые отложения донского горизонта ($\mathrm{gQ}_{\mathrm{I}}^{\text {dns }}$) вскрыты во скважинах глубиной свыше 15 м и представлены суглинками преимущественно полутвердой консистенции, темносерого до темно-шоколадно-серого цвета, массивными, песчанистыми, с включениями дресвы, щебня и мелких глыб карбонатных пород 10-15\%, вскрытой мощностью $3,0-4,5 \mathrm{~m}$.

На момент инженерно-геологических изысканий (июль - август 2014 года) вскрыто три водоносных горизонта.

Первый водоносный горизонт развит спорадически и вскрыт на глубинах $0,3-0,50$ м (абсолютные отметки $181,50-181,20$ м). Подземные воды безнапорные. Горизонт приурочен к прослоям и линзам песков в толще глин микулинского горизонта. Питание происходит за счет инфильтрации атмосферных осадков. В период снеготаяния и обильного выпадения осадков возможно повышение уровня воды и возникновение верховодки на отметках, близких к земной поверхности.

Подземные воды горизонта по коррозионным свойствам характеризуются: по отношению к арматуре железобетонных конструкций при периодическом смачивании - слабоагрессивны; агрессивность вод к свинцовой оболочке кабеля - высокая, к алюминиевой - средняя.

Второй водоносный горизонт вскрыт на глубине $0,5-6,0$ м (абсолютные отметки $183,53-177,95$ м). Подземные воды слабонапорные. Величина напора $0,2-3,7$ м. Абсолютные отметки установившегося уровня 184,03 - 178,15 м. Горизонт приурочен к межледниковым пескам донскомосковского горизонта. Верхним водоупором являются водно-ледниковые суглинки московского горизонта, нижним - водно-ледниковые суглинки донского горизонта.

Подземные воды горизонта по коррозионным свойствам характеризуются: к бетону - неагрессивны, по отношению к арматуре железобетонных конструкций при периодическом смачивании - слабоагрессивны; агрессивность вод к свинцовой и алюминиевой оболочкам кабеля - высокая.

Третий водоносный горизонт вскрыт на глубине 10,0 м (абсолютная отметка 172,0 м). Подземные воды напорные. Горизонт приурочен к водноледниковым пескам донского горизонта. Верхним и нижним водоупорами являются водно-ледниковые суглинки донского горизонта.

Подземные воды горизонта по коррозионным свойствам характеризуются: по отношению к арматуре железобетонных конструкций при периодическом смачивании - слабоагрессивны; агрессивность вод к свинцовой и алюминиевой оболочкам кабеля - средняя.

Коэффициент фильтрации грунтов: для песков гравелистых $-50-100$ м/сут; для песков средней крупности - 5-15 м/сут.

Исследуемая территория отнесена к подтопленной, северная часть расположения ВЗУ - к неподтопляемой.

По результатам выполненных инженерно-геологических работ в геологическом разрезе территории проектируемого строительства выделено 9 инженерно-геологических элементов (ИГЭ):

ИГЭ-1 Торф (bQ ${ }_{\text {IV }}$);
ИГЭ-2 Глина мягкопластичная среднезаторфованная ($\mathrm{QQ}_{\mathrm{II}}{ }^{\text {mik }}$);
ИГЭ-2 Суглинок тугопластиячный ($f, \mathrm{lgQ}_{\mathrm{II}}{ }^{\mathrm{ms}}$) (в районе ВЗУ);
ИГЭ-3 Песок средней крупности, средней плотности, малой, средней степени водонасыщения и водонасыщенный (f, $\mathrm{lgQ}_{\mathrm{I}}^{\mathrm{dns}}{ }^{\text {III }}$) (в районе ВЗУ);

ИГЭ-3а Песок средней крупности, рыхлый, малой, средней степени водонасыщения и водонасыщенный ($\mathrm{f}, \mathrm{lg} \mathrm{Q}_{\mathrm{I}}^{\mathrm{dns}}{ }_{-\mathrm{II}} \mathrm{ms}$);

ИГЭ-4 Песок гравелистый, средней плотности, малой, средней степени водонасыщения и водонасыщенный ($f, \mathrm{lgQ}_{\mathrm{I}}{ }^{\text {dns }}{ }_{-I I} \mathrm{~ms}$);

ИГЭ-5 Суглинок полутвердый ($\mathrm{f}, \mathrm{lg} \mathrm{Q}_{\mathrm{l}}^{\mathrm{dns}}$);
ИГЭ-5 Песок средней крупности, средней плотности, водонасыщенный (f, $\mathrm{lgQ}^{\mathrm{dns}}$) (в районе РТП);

ИГЭ-6 Суглинок твердый ($\mathrm{gQ}_{\mathrm{I}}^{\mathrm{dns}}$).
Коррозионная агрессивность грунтов по отношению к алюминиевой оболочке кабеля - высокая, к свинцовой - средняя, к стали - высокая; по отношению к бетону и к железобетонным конструкциям грунты неагрессивны.

Нормативная глубина сезонного промерзания составляет для: глин и суглинков (ИГЭ-2) - 1,32 м; песков средней крупности (ИГЭ-3, ИГЭ-3а) $1,65 \mathrm{~m}$.

По степени морозной пучинистости грунты, залегающие в зоне сезонного промерзания, представленные глинами и суглинками (ИГЭ-2), оцениваются как сильнопучинистые; пески средней крупности (ИГЭ-3, ИГЭ-3a) - практически непучинистые.

Территория отнесена к неопасной в отношении проявления карстовосуффозионных процессов.

По инженерно-геологическим условиям территория проектируемого строительства относится к III (сложной) категории, в районе расположения ВЗУ - ко ІІ (средней сложности).

Результаты инженерно-геологических изысканий первого и второго этапов проектирования 1 очереди (жилые дома) жилого комплекса по адресу: Московская область, Солнечногорский муниципальный район, сельское поселение Кутузовское, д. Рузино рассмотрены ООО «Научнотехнический центр «Промбезопасность-Оренбург» (свидетельство об аккредитации № POCC RU.0001.610041, № POCC RU.0001.610045) - положительное заключение от 10 октября 2013 года № 1-1-1-0422-13.

Инженерно-экологические изьіскания

Результаты инженерно-экологических изысканий на весь участок строительства жилого комплекса по адресу: Московская область, Солнечногорский муниципальный район, сельское поселение Кутузовское, д. Рузино рассмотрены ООО «Научно-технический центр «ПромбезопасностьОренбург» (свидетельство об аккредитации № POCC RU.0001.610041, № POCC RU.0001.610045) - положительное заключение от 10 октября 2013 года № 1-1-1-0422-13.

Инженерно-геодезические изыскания на территории проектируемого строительства

Работы проводились на территории Московской области, с.п. Кутузовское, дер. Рузино. Участок не застроен. На данную территорию имеются планы М 1:10000 разных лет выпуска.

Элементы гидрографии отсутствуют.
Изыскания проводились в не благоприятный период года. Опасных природных и техногенных факторов не обнаружено.

Работы выполнялись в системе координат МСК-50 и Балтийской системе высот 1977.

4. Описание технической части проектной документации

4.1. Схема планировочной организации земельного участка

Земельный участок, выделенный под строительство жилого комплекса, расположен на юго-востоке Солнечногорского муниципального района Московской области, вблизи муниципального района Московской области и Зеленоградского АО г. Москвы (г. Зеленоград) по адресу: Московская область, Солнечногорский район, сельское поселение Кутузовское, деревня Рузино.

Вид разрешенного использования земельного участка - для комплексного освоения в целях жилищного строительства.

Площадь отведенного земельного участка в границах градостроительного плана земельного участка составляет 92,3321 га. Границами участка являются: с севера - река Горетовка; на расстоянии $50-100$ м от проектируемого участка, проходит граница Солнечногорского муниципального района Московской области и Зеленоградского АО г. Москвы (г. Зеленоград); с востока - а/д «Брехово-Рузино-Зеленоград» (Берёзовая аллея), далее - территория усадебной застройки д. Рузино; с юга - территория АЗС и индивидуальная застройка д. Брехово; с запада - а/д «Кутузовское шоссе» (Пятницкое шоссе - Зеленоград), далее земли Крюковского участкового лесничества, Клинского лесничества с кадастровым номером 50:09:070511.

Согласно проекту планировки территория делится на 5 участков: 4 под размещение жилых комплексов и 1-го под размещение инженерного комплекса. Застройку всей территории жилого комплекса предполагается вести 4-мя очередями строительства. Настоящим заключением рассматривается второй и четвертый этапы проектирования первой очереди строи-

тельства (жилые дома IV.03, IV. 05 - IV.09, детское дошкольное учреждение IV.10; внутриплощадочные инженерные сети и сооружения).

Площадь территории проектирования второго этапа первой очереди строительства составляет 7,4961 га. Территория ограничена: с севера и востока - проектируемыми проездами улично-дорожной сети (5 -й этап 1 -й очереди строительства); с юга - пустырем; с запада - территорией многоэтажных многоквартирных домов (1-й этап 1 -й очереди строительства) и территорией общеобразовательного школьного учреждения на 1325 мест корпус III. 12 (3-й этап 1-й очереди строительства).

Территория проектирования четвертого этапа первой очереди строительства включает: территорию проектирования РТП2 (V.III) и КНС (V.IV) площадью - 1,6346 га; территорию проектирования ВЗУ (V.0I) площадью $-0,3562$ га; территорию проектирования ЛОС (V.II) площадью - 0,2896 ra.

Территория проектирования четвертого этапа первой очереди строительства со всех сторон ограничена проектируемыми проездами уличнодорожной сети (5 -й этап 1-й очереди строительства).

Планировочная организация участка разработана в масштабе 1:500 на копии инженерно-топографического плана, выполненного филиалом ГП МО «АПУ Московской области - АПУ по Солнечногорскому району» заказ от 14 апреля 2014 года № 50:09/GEO.0060.14 (для части 1, 3).

Планировочная организация участка разработана в масштабе 1:500 на копии инженерно-топографического плана, выполненного филиалом ГП МО «АПУ Московской области - АПУ по Солнечногорскому району» заказ №50:09/GEO.006.14 (для части 2).

На проектируемых участках отсутствуют строения, подлежащие сносу. На участках отсутствуют инженерные коммуникации, подлежащие демонтажу или перекладке. На участках имеются древесно-кустарниковые насаждения подлежащие вырубке. Часть территории участков расположена в водоохранной зоне реки Горетовки, водоохранной зоне и прибрежной защитной полосе ручья без названия, береговой полосе ручья без названия. Согласно представленной проектной документации, ручей, пересекающий территорию отвода под строительство жилого комплекса, заключается в коллектор.

Рельеф участков сложный с характерным понижением к ручью, являющимся притоком p. Горетовка. Перепад рельефа по ручью составляет 9 м на протяжении 220 м от отметки 182,50 до 173,50 с понижением в восточном направлении. По территории 2 этапа 1 очереди основное понижение рельефа осуществляется в северо-восточном направлении. Перепад отметок составляет 23,6 м на протяжении 570 м от отметки 202,10 до 178,50 м. По территории 4 этапа 1 очереди понижение рельефа происходит с запада в северо-восточном, восточном, юго-западном и южном направлении. Максимальный перепад в юго-западном направлении составляет 17 м на протяжении 190 м от отметки 190,50 до 173,50 м.

Проектной документацией второго этапа 1 очереди предусматривается строительство шести жилых домов (IV.03, IV.05, IV.06, IV.07, IV.08,
IV.09) переменной этажности от 11 до 17 этажей со встроенными нежилыми помещениями на первых этажах, дошкольной образовательной организации ДОО (V.10) и трех трансформаторных подстанций (III.20, III.21, IV.13).

Проектной документацией четвертого этапа 1 очереди предусматривается строительство распределительной трансформаторной подстанции PTIT2 (V.III), канализационной насосной станции КНС (V.IV), водозаборного узла ВЗУ (V.I), локальных очистных сооружений ЛОС (V.II).

Общее количество квартир в жилых корпусах IV.03, IV.05, IV.06, IV.07, IV.08, IV. 09 - 1232 шт. Общее расчетное количество жителей - 1753 человек.

Въезды/выезды на проектируемые участки второго и четвертого этапа первой очереди строительства предусмотрены с проектируемого проезда улично-дорожной сети (5-ый этап проектирования 1 -й очереди строительства).

Схема транспортного и пешеходного обслуживания территории жилых домов решена в увязке с проектируемыми проездами и тротуарами, обеспечивая внешние и внутренние транспортно-пешеходные связи. К жилым домам обеспечивается подъезд пожарной техники со всех сторон по проектируемым проездам, а также за счет тротуаров с возможностью проезда спецтехники. Ширина проездов и тротуаров с возможностью проезда составляет $6,0 \mathrm{~m}$. Ширина тротуаров принята 2,25 м. Автомобильные проезды проходят с внешней стороны зданий. В проекте предусмотрены мероприятия по созданию безбарьерной среды для передвижения инвалидов и маломобильных групп населения. В проекте обеспечено разделение входов и въездов в помещения жилого и нежилого фонда.

На участок ДОО предусматривается два въезда с внутриквартальных проездов в северной и южной части участка. К зданию ДОО обеспечивается подъезд пожарной техники со всех сторон. Ширина проездов составляет $6,0 \mathrm{~m}$. Ширина тротуаров с возможностью проезда спецтехники составляет 3,5 м. Хозяйственная зона обеспечена самостоятельным въездом.

Эксплуатация и противопожарное обслуживание отдельно стоящих инженерных сооружений предусматривается по проектируемым проездам шириной $3,5-6,0$ м.

Проектными решениями второго этапа проектирования первой очереди строительства на проектируемой территории предусмотрено устройство открытых автостоянок для временного хранения автомобилей в количестве 196 машиномест. Постоянное хранение автомобилей жителей предусматривается в проектируемой многоярусной открытой автостоянке (рассматривается отдельным проектом).

Организация рельефа участка выполнена методом проектных горизонталей сечением рельефа через 0,1 м и решена в увязке с проектными отметками основной проектируемой дороги, огибающей по периметру всю территорию жилого комплекса и проектными отметками первого этапа проектирования. Перепады высот решены откосами и подпорными стен-

ками. Вертикальная планировка участка обеспечивает нормальный отвод атмосферных вод по лоткам проектируемой проезжей части в дождеприемные решетки проектируемой сети ливневой канализации с последующим сбросом в проектируемые очистные сооружения ливневой канализации.

Относительная отметка 0,00 проектируемых зданий и сооружений соответствует абсолютной отметке на местности:

№ корпуса	Наименование зданий и сооружений	Абсолютная отметка «0,000»
III.20	Трансформаторная подстанция ТП18	198,40
III.21	Трансформаторная подстанция ТП21	193,50
IV.03	Многоэтажный секционный жилой дом	194,55
IV.05	Многоэтажный секционный жилой дом	189,50
IV.06	Многоэтажный жилой дом башенного типа	189,50
IV.07	Многоэтажный жилой дом башенного типа	189,60
IV.08	Многоэтажный жилой дом башенного типа	185,40
IV.09	Многоэтажный жилой дом башенного типа	185,40
IV.10	ДОО на 216 мест	191,55
IV.13	Трансформаторная подстанция ТП17	184,10
IV.III	РТП2	189,55
V.0I	Здание насосной станции комплекса ВЗУ	188,25

Продольные и поперечные уклоны по проездам и тротуарам соответствуют нормативным значениям. Поперечные профили по внутриквартальным проездам приняты односкатными.

Благоустройством территории второго этапа первой очереди строительства предусматривается устройство площадок для игр детей общей площадью - 1643 кв.м, отдыха взрослых общей площадью - 324 кв. м, занятий физкультурой общей площадью - 1016 кв. м. На территории предусматривается устройство скейт парка (405 кв.м), площадки для катания на роликах (582 кв.м), велодорожки, предусматривается устройство хозяйственных площадок.

На территории ДОО предусматриваются групповые, возрастные площадки с теневыми навесами, физкультурные площадки, хозяйственная площадка, площадка для мусорных контейнеров. По границе участка детского сада выполняется ограждение с воротами и калитками. Все площадки оборудуются малыми архитектурными формами и элементами благоустройства в соответствии с номенклатурой, выпускаемой Стройкомплексом. Предусматривается освещение придомовых территорий с площадками и территорий ДОО.

Проектом предусматривается ограждение территории ВЗУ глухим забором высотой $2,5 \mathrm{~m}$ с въездными воротами. По периметру ограждения предусматривается освещение территории ВЗУ.

Озеленение территории осуществляется высадкой деревьев и кустарников с учетом их санитарно-защитных и декоративных свойств, а также устройством газонов и цветников. На участке ДОО предусматриваются к высадке деревья и кустарники, не имеющие шипов и ядовитых плодов. Озеленение территорий под размещение ЛОС и ВЗУ предусматривается устройством устойчивого газонного покрытия.

Конструкции дорожных покрытий запроектированы в соответствии с рекомендациями альбома ГУП «Мосинжпроект» СК 6101-2010. Проезды и автостоянки запроектированы с покрытием из трехслойного асфальтобетона и бетонной тротуарной плитки; покрытие тротуаров - бетонная плитка; покрытие детских и спортивных площадок - спецсмесь, резиновое покрытие, спортивный газон; покрытие отмосток - литой асфальт. Конструкции дорожных покрытий, предназначенных для проезда пожарной техники, рассчитаны на соответствующую нагрузку.

Проезды и автостоянки отделяются от тротуара и газона бетонным бордюром БР $100.30 .15 ; 100.30 .18$, тротуар отделяется от газона и площадок бетонным бордюром БР 100.20 .8 , уложенным в уровне сопрягаемых поверхностей. Высота бортового камня в местах пересечения тротуаров с проезжей частью на пути следования инвалидов не превышает 0,015 м.

Основные технические показатели земельного участка в границах проектирования.

Наименование	Ед. изм.	Количество			
		2 этап	4 этап		
			$\begin{aligned} & \hline P T \Pi \\ & K H C \end{aligned}$	B3V	ЛОС
Площадь участка проектирования	кв. м.	74961	16346	3561,5	2896
Площадь застройки	кв. м	8565	86	556,5	16,5
Площадь твердых покрытий (проезды, тротуары, отмостки)	Кв. M	33674	363	1309,5	18
Площадь озеленения	кв. M	32722	15897	1695,5	2861,5

4.2. Архитектурные решения

Проектная документация 1 очереди 2 и 4 этапов предусматривает строительство многосекционных жилых домов IV.03, IV.05; жилых домов башенного типа IV. 06 - IV.09, детского дошкольного учреждения IV. 10 и сооружение павильона очистных сооружений, распределительной трансформаторной подстанции (РТП), блочных трансформаторных подстанций (ТП) и водозаборного узла.

Kорпус IV.03. Строительство 7-секционного жилого дома переменной этажности с подвалом, цокольным этажом в секциях № 1 - № 5 и встроенными нежилыми помещениями. Здание «П»-образной формы с максимальной отметкой верха здания $+47,85$ м и состоит:

- секция № 1 - торцевая, 12 -этажная с подвалом и цокольным этажом (в осях $1-2 / Б-В$) с размерами в осях $29,00 \times 13,20$ м;
- секция № 2 - рядовая, 14 -этажная с подвалом и цокольным этажом, с размерами в осях $26,40 \times 11,60 \mathrm{~m}$;
- секции № 3 и № 5 (зеркально) - угловые, 11-этажные с подвалом и цокольным этажом, с размерами в осях $18,15 \times 24,10$ м глубиной 11,60 м и углом 90°;
- секция № 4 - рядовая, 13 -этажная с подвалом и цокольным этажом, с размерами в осях $32,00 \times 11,60$ м;
- секция № 6 - рядовая, 14 -этажная с подвалом, с размерами в осях $26,40 \times 11,60 \mathrm{~m} ;$
- секция № 7 - торцевая, 12 -этажная с подвалом с размерами в осях $29,00 \times 13,20 \mathrm{~m}$.

В связи с активным рельефом проектируемого участка входы в секции (кроме секций № 6 и № 7) с планировочной отметки земли возможны как в цокольный этаж (входы со стороны улицы), так и на отметку первого этажа (со стороны двора).

Размещение:

- в подвале:

в секции № 1 (отм. $-8,35$ и $-5,70$) - помещений прохождения коммуникаций, электрощитовой, помещения СС, венткамеры;

в секциях № 2 (отм. -6,60 и -6,45) и № 5 (отм. -6,15) - помещений прохождения коммуникаций, венткамеры;

в секции № 3 (отм. $-7,95,-6,75$ и -6,60) - помещений прохождения коммуникаций, электрощитовых, венткамеры, аппаратной СС;

в секции № 4 (отм. $-7,95$ и -7,35) - помещений прохождения коммуникаций, ИТП, помещения насосной станции, водомерного узла, венткамеры;

в секциях № 6 и № 7 (отм. $-4,35$ и -3,30) - кладовых ячеек жильцов дома, венткамер, помещения СС (в секции № 7);

- в цокольном этаже:

в секции № 1 - первого уровня помещений офисов (отм. $-4,20$); входной группы жилой части дома: колясочной, помещения консьержа с c/узлом, помещения уборочного инвентаря (отм. $-4,05$);

в секции № 2 - магазина с технологическими и бытовыми помещениями (отм. $-4,05$), первого уровня помещений офисов (отм. $-4,20$); входной группы жилой части дома: колясочной, помещения консьержа с с/узлом, помещения уборочного инвентаря (отм. -4,35);

в секции № 3 - помещений клубного типа (отм. $-4,50$), офисного помещения с с/узлом, венткамерой, комнатой приема пищи и помещением уборочного инвентаря (отм. $-4,65$); входной группы жилой части дома: колясочной, помещения консьержа с с/узлом, помещения уборочного инвентаря (отм. -4,65);

в секции № 4 (отм. -4,65) - входной группы жилой части дома: колясочной, помещения консьержа с с/узлом, помещения уборочного инвентаря, кладовых ячеек жильцов дома в каждой секции;

в секции № 5 - офисного помещения с с/узлом, венткамерой и помещением уборочного инвентаря (отм. $-3,90$); входной группы жилой части дома (отм. -4,05): колясочной, помещения консьержа с с/узлом, помещения уборочного инвентаря, кладовых ячеек жильцов дома в каждой секции;

- на 1 этаже:

в секции № 1 - помещений кафе с технологическими и бытовыми помещениями (отм. $-3,60$ в осях $1-2 / А-Б$); входной группы жилой части дома с колясочной, квартиры для МГН (отм. $-1,20$ и 0,00), второго уровня помещений офиса (отм. $-0,15$);

в секции № 2 - входной группы жилой части дома с колясочной, трех квартир (в т.ч. квартиры для МГН) (отм. $-1,20$ и 0,00), второго уровня помещений офиса (отм. $-0,15$);

в секции № 3 - входной группы жилой части дома с колясочной, трех квартир (в т.ч. двух квартир для МГН) (отм. -0,90 и 0,00);

в секции № 4 - входной группы жилой части дома с колясочной, четырех квартир (в т.ч. трех квартир для МГН) (отм. -0,90 и 0,00);

в секции № 5 - входной группы жилой части дома с колясочной, четырех квартир (в т.ч. двух квартир для МГН) (отм. $-0,90$ и 0,00);

в секции № 6 (отм. $-1,05$ и 0,00) - входной группы жилой части дома, двух квартир для МГН; офисного помещения с с/узлом;

в секции № 7 (отм. $-1,05$ и 0,00) - входной группы жилой части дома, трех квартир (в т.ч. двух квартир для МГН); офисного помещения с с/узлом;

- на жилых этажах:

в секциях № 1 и № 7 на $2-12$ этажах (отм. $+3,15-+34,65$) - пяти квартир;

в секциях № 2 и № 6 на $2-14$ этажах (отм. $+3,15-+40,95$) - пяти квартир;

в секциях № 3 и № 5 на $2-11$ этажах (отм. $+3,15-+31,50$) - пяти квартир;

в секции № 4 на $2-13$ этажах (отм. $+3,15-+37,80$) - восьми квартир;

- на отметке $+38,45$ (в секциях № 1 и № 7), $+44,75$ (в секции № 2 и № $6),+34,65$ (в секциях № 3 и № 5), $+40,95$ (в секции № 4) - машинного помещения лифтов.

Связь по этажам: лестницей и лифтами грузоподъемностью 1×1000 кг и 1 x 400 кг в каждой секции.

Кориус IV.05. Строительство 7-секционного жилого дома переменной этажности с подвалом, цокольным этажом в секциях № 3 - № 7 и встроенными нежилыми помещениями. Здание «П»-образной формы с максимальной отметкой верха здания $+51,00$ м и состоит:

- секция № 1 - торцевая, 13-этажная с подвалом, с размерами в осях $29,00 \times 13,50 \mathrm{~m} ;$
- секция № 2 - рядовая, 15 -этажная с подвалом, с размерами в осях $26,40 \times 11,60 \mathrm{~m}$;
- секции № 3 и № 5 (зеркально) - угловые, 13-этажные с подвалом и цокольным этажом, с размерами в осях $24,10 \times 18,15$ м глубиной 11,60 м и углом 90°;
- секция № 4 - рядовая, 15 -этажная с подвалом и цокольным этажом, с размерами в осях $32,00 \times 11,60$ м.
- секция № 6 - рядовая, 15 -этажная с подвалом и цокольным этажом, с размерами в осях $26,40 \times 11,60 \mathrm{~m}$;
- секция № 7 - торцевая, 13-этажная с подвалом и цокольным этажом, с размерами в осях $29,00 \times 13,20$ м.

В связи с активным рельефом проектируемого участка входы в секции (кроме секций № 1 и № 2) с планировочной отметки земли возможны как в цокольный этаж (входы со стороны улицы), так и на отметку первого этажа (со стороны двора).

Размещение:

- в подвале:

в секциях № 1 и № 2 (отм. $-4,35$ и $-3,30$) - кладовых ячеек жильцов дома, венткамер, помещения СС и электрощитовой (в секции № 1);

в секции № 3 (отм. $-4,65$ и -4,15) - помещений прохождения коммуникаций, венткамеры;

в секции № 4 (отм. $-8,85$) - помещения ИТП, венткамер помещения насосной станции, водомерного узла;

в секции № 5 (отм. $-9,15$ и $-8,05$) - помещений прохождения коммуникаций, электрощитовых, венткамер, аппаратной;

в секциях № 6 (отм. $-7,35$ и $-6,90$) и № 7 (отм. $-6,30$ и $-6,00$) - помещений прохождения коммуникаций, венткамеры;

- в цокольном этаже:

в секции № 3 - входной группы жилой части дома (отм. $-4,05$); колясочной, помещения консьержа с с/узлом, помещения уборочного инвентаря, кладовых ячеек жильцов дома;

в секции № 4 - помещений офиса (отм. $-4,35$); входной группыы жилой части дома (отм. $-5,55$): колясочной, помещения консьержа с с/узлом, помещения уборочного инвентаря, кладовых ячеек жильцов дома;

в секции № 5 - помещений офисов (отм. $-5,95$ и -5,35); входной группы жилой части дома (отм. $-5,85$): колясочной, помещения консьержа с с/узлом, помещения уборочного инвентаря;

в секциях № 6 и № 7 - первого уровня помещений офисов (отм. $-5,25$ в секции № 6 и $-4,20$ в секции № 7); входной группы жилой части дома (отм. $-5,25$ для секции № 6 и $-3,90$ для секции № 7): колясочной, помещения консьержа с с/узлом, помещения уборочного инвентаря, кладовых ячеек жильцов дома;

- на 1 этаже:

в секции № 1 - помещений спортивных залов с технологическими и бытовыми помещениями (отм. -0,90), помещений офиса (отм. -1,20); входной группы жилой части дома: колясочной, помещения консьержа с с/узлом, помещения уборочного инвентаря (отм. $-1,20$);

в секции № 2 - магазина с технологическими и бытовыми помещениями (отм. $-1,95$); помещений офиса (отм. $-1,20$); входной группы жилой части дома: колясочной, помещения консьержа с с/узлом, помещения уборочного инвентаря (отм. $-1,20$);

в секции № 3 - магазина с технологическими и бытовыми помещениями (отм. $-1,95$); помещений офиса (отм. $-2,50$); входной группы жилой части дома (отм. $-0,90$ и 0,00);

в секции № 4 (отм. $-1,05$ и 0,00) - входной группы жилой части дома и четырех квартир (в т.ч. трех квартир для МГН);

в секции № 5 (отм. $-0,90$ и 0,00) - входной группы жилой части дома с колясочной и четырех квартир (в т.ч. двух квартир для МГН);

в секциях № 6 и № 7 - второго уровня помещений офиса (отм. $-0,15$); входной группы жилой части дома (отм. $-1,05$ и 0,00 в секции № $6,-1,35$ и 0,00 в секции № 7) с колясочной и трех квартир (в т.ч. одной квартиры для МГН в секции № 6 и трех квартир в секции № 7);

- на жилых этажах:

в секциях № 1 и № 7 на $2-13$ этажах (отм. $+3,15-+37,80$) - пяти квартир;

в секциях № 2 и № 6 на $2-15$ этажах (отм. $+3,15-+44,10$) - пяти квартир;

в секциях № 3 и № 5 на $2-13$ этажах (отм. $+3,15-+37,80$) - пяти квартир;

в секции № 4 на 2-15 этажах (отм. $+3,15-+44,10$) - шести квартир;

- на отметке $+40,95$ (в секциях № 1 и № 7), $+47,25$ (в секциях № 2, № 4 и № 6), $+40,95$ (в секциях № 3 и № 5) - машинного помецения лифта.

Связь по этажам: лестницей и лифтами грузоподъемностью 1×1000 кг и 1×400 кг в каждой секции.

Kopnyca IV. 06 и IV.08. Строительство двух 17-этажных жилых домов башенного типа со встроенными нежилыми помещениями. Здание прямоугольной формы с размерами в осях $19,20 \times 18,70$ м и максимальной отметкой верха здания $+57,30$ м.

Размещение:

- в подвале (отм. -3,30) - помещения ИТГП, электрощитовой, помещения СС, насосной с водомерным узлом, венткамеры, кладовых ячеек жильцов дома;
- на 1 этаже (отм. 0,00 и $+0,90$ в корпусе IV. 06 и отм. $0,00,+1,05$ и $+1,35$ в корпусе IV.08) - помещений офисов; стоматологии с технологическими и бытовыми помещениями (в корпусе IV.06); входной группы жилой части дома: колясочной, помещения консьержа с с/узлом, помещения уборочного инвентаря;
- на 2-17 этажах (отм. $+3,75-+51,00$) - квартир;
- на отметках $+54,15$ и $+54,80$ - машинного помещения лифтов, выходов на кровлю.

Связь по этажам: лестницей и лифтами грузоподъемностью 1×1000 кг и 1×400 кг в каждой секции.

Корпуса IV. 07 и IV.09. Строительство двух 17-этажных жилых домов башенного типа. Здание прямоугольной формы с размерами в осях $19,20 \times 18,70$ м и максимальной отметкой верха здания $+57,30$ м.

Размещение:

- в подвале (отм. $-4,05$ и $-3,30$ в корпусе IV. 07 и отм. $-3,90$ и -3,30 в корпусе IV.09) - помещения ИТП, электрощитовой, помещения CC, насосной с водомерным узлом, венткамеры, кладовых ячеек жильцов дома;
- на 1 этаже (отм. $-0,75$ и 0,00 в корпусе IV. 07 и отм. -, 06 и 0,00 в корпусе IV.09) - помещений офисов; входной группы жилой части дома: колясочной, помещения консьержа с с/узлом, помещения уборочного инвентаря, квартир;
- на 2-17 этажах (отм. $+3,75-+51,00$) - квартир;
- на отметках $+56,10$ и $+56,75$ - машинного помещения лифтов, выходов на кровлю.

Связь по этажам: лестницей и лифтами грузоподъемностью 1×1000 кг и 1 x 400 кг в каждой секции.

Отделка фасадов корпусов IV.03, IV.05, IV.06-IV.09:

- цоколь - натуральный камень или керамогранит;
- наружные стены - вентилируемый фасад с отделкой: окрашенными фиброцементными плитами, металлическими профилированными крашенными листами; штукатурка на лоджиях;
- окна - ПВХ профиль, двухкамерный стеклопакет;
- окна и витражи нежилых этажей - алюминиевый профиль, двухкамерный стеклопакет.

Корпус IV.10. Строительство 2-3-этажного с подвалом здания дошкольной образовательной организачии (ДОО) с размерами в осях $55,78 \times 24,53$ м и максимальной отметкой верха здания $+13,71$ м.

Размещение:

- в подвале (отм. $-3,75$) - постирочной в составе: стиральной, гладильной, помещения сортировки белья, помещения хранения стиральных средств; ИТП, помещения ввода кабелей, венткамеры, помещения аппаратной, элекрощитовой, помещения хранения светильников, помещения водомерного узла, помещений прохождения коммуникаций;
- на 1 этаже (отм. 0,00) - групповых ячеек в составе: групповая, спальня, туалетная, раздевальная, буфетная; помещений пищеблока с технологическими и бытовыми помещениями; медецинского блока в составе: кабинет, процедурная, палаты изолятора, с/узел; кабинетов, с/узлов, гардероба;
- на 2 этаже (отм. +3,60) - групповых ячеек в составе: групповая, спальня, туалетная, раздевальная, буфетная; залов для физкультурных и музыкальных занятий с инвентарной, кладовой, раздевалками и с/узлами;
- на 3 этаже (отм. +7,20) - групповых ячеек в составе: групповая, спальня, туалетная, раздевальная, буфетная.

Связь по этажам: лестницей и лифтом грузоподъемностью 1×1000 кг и подъемником 1×100 кг.

Отделка фасадов корпуса IV.10:

- наружные стены - вентилируемый фасад с отделкой: окрашенными фиброцементными плитами, металлическими профилированными крашенными листами; натуральный камень или керамогранит;
- окна - ПВХ профиль, двухкамерный стеклопакет.

Строительство 1-этажного павильона локальных очистных сооружений поверхностных сточных вод ЛОС (V.II). Сооружение прямоугольной формы с размерами в осях $3,00 \times 5,00$ м и максимальной отметкой $+3,10$.

Размещение:

- на отметке 0,00 - технологического помещения.

Отделка фасадов павильона очистных сооружений:

- наружные стены - сэндвич-панели;
- окна - ПВХ профиль, двухкамерный стеклопакет.

Строительство 1-этажного здания распределительной трансформаторной подстаниии РTII2 (V.III). Здание прямоугольной в плане формы с размерами в осях $13,82 \times 5,76$ м и максимальной отметкой $+3,13$.

Размещение:

- на отметке -1,99 - кабельного приямка;
- на отметке 0,00 - помещений для размещения оборудования с отдельными входами.

Отделка фасадов распределительной трансформаторной подстануии:

- наружные стены - сэндвич-панели;
- окна - ПВХ профиль, двухкамерный стеклопакет.

Строительство 1-этажного здания водозаборного узла BЗУ (V.I). Здание прямоугольной в плане формы с размерами в осях $15,00 \times 15,00$ м и максимальной отметкой $+6,60$ с пристроенным обвалованным сооружением резервуаров с размерами в осях $16,00 \times 20,30 \mathrm{~m}$.

Размещение:

- на отметке -1,00 - помещений резервуара;
- на отметках $-2,80$ и 0,00 - зала насосной, электрощитовой, бытового помещения, с/узла.

Отделка фасадов здания водозаборного узла:

- цоколь - керамогранитная плитка;
- наружные стены - сэндвич-панели;
- окна - ПВХ профиль, двухкамерный стеклопакет.

4.3. Конструктивные решения

Корпус IV.03. Уровень ответственности - нормальный. Степень огнестойкости - II, класс конструктивной пожарной опасности - С0, класс пожарной опасности строительных конструкций К0. Конструктивная схема -каркасно-стеновая, несущие конструкции из монолитного железобетона классов В25, арматуры классов А240, А500C. Общая жесткость и пространственная неизменяемость здания обеспечиваются совместной работой фундаментов, колонн (пилонов), внутренних и наружных несущих стен, плит перекрытия и покрытия.

В осях Г-Г/1/1-2, Д-Е/4-4/1, Г/1-Г/5-6 предусмотрены деформационные швы.

Подземная часть.
Фундаменты - монолитные железобетонные (марки бетона по морозостойкости F100, по водонепроницаемости W6):

плиты толщиной 800 мм в осях А-Б/1-2,
900 мм в осях Б-Е/1-2, Д-Е/2-4, по бетонной (бетон класса В10) подготовке, толщиной 100 мм, на естественном основании: суглинки тугопластичные ($\varphi=21^{\circ}, \rho=2,0 \Gamma / \mathrm{cm}^{3}, \mathrm{E}=160$ кг $/ \mathrm{cm}^{2}, \mathrm{c}=0,31 \mathrm{\kappa г} / \mathrm{cm}^{2}$), пески средней крупности средней плотности ($\varphi=33^{\circ}, \rho=1,75 г / \mathrm{cm}^{3}, \mathrm{E}=250 \mathrm{\kappa г} / \mathrm{cм}^{2}$), суглинки полутвердые ($\varphi=23^{\circ}, \rho=2,02$ г $/ \mathrm{cm}^{3}, \mathrm{E}=210$ кг $/ \mathrm{cm}^{2}$). Проектом предусмотрена частичная замена слоя слабых грунтов (суглинки с содержанием органических веществ), толщиной не менее $2,0 \mathrm{~m}$, на послойно уплотненные (до коэффициента уплотнения 0,98) песчаные грунты средней крупности, средней плотности с расчетными характеристиками, не менее: $\varphi=35^{\circ}$, $\rho=1,65 \mathrm{r} / \mathrm{cm}^{3}, \mathrm{E}=300 \mathrm{\kappa r} / \mathrm{cm}^{2}, \mathrm{c}=0,001 \mathrm{\kappa г} / \mathrm{cm}^{2}$, с геологическим контролем качества. Согласно представленных результатов расчетов, сопротивление грунтов основания 8,0 кг/см ${ }^{2}$, давление под подошвой 2,8 кг/см ${ }^{2}$, расчетная осадка от 10,6 см до 14,2 см, относительная разность осадок от 0,0018 до 0,0024 . В местах опирания колонн (пилонов) проектом предусмотрено вертикальное (поперечное) армирование. В плите устраиваются приямки с сохранением толщины плиты в днище приямка. В местах изменения высотных отметок фундаментной плиты предусмотрено устройство нижней плоскости бетона по откосу под углом в 45°.

Фундаменты в осях А-Г/5-6 - монолитные железобетонные (марки по водонепроницаемости W6, по морозостойкости F100) плитные ростверки толщиной:

800 мм в осях А-Б/5-6,
900 мм в осях Б-Г/5-6, по бетонной подготовке толщиной 100 мм (бетон класса B10), на свайном основании - сплошное свайное поле с шагом свай $1,3(1,2) \times 1,4$ м, основанием свай служат суглинки полутвердые ($\varphi=23^{\circ}$, $\rho=2,02 \mathrm{r} / \mathrm{cm}^{3}, \mathrm{E}=210 \mathrm{\kappa г} / \mathrm{cm}^{2}$), заглубление не менее $3,0 \mathrm{~m}$. Сваи сборные железобетонные (бетон класса B25, марка по водонепроницаемости W6) сечением 300×300 мм, длиной $9,0,10,0$ м, по серии 1.011.1-10 выпуск 1 . Согласно представленных результатов расчетов расчетная нагрузка на сваю 4,5 тонны, несущая способность свай не менее 5,78 тонн; максимальная

осадка от 5,6 до $5,7 \mathrm{~cm}$, относительная разность осадок 0,0003 . Проектом предусмотрены натурные испытания (динамические и статические) свай. Соединение свай с ростверками шарнирное.

Наружные стены - несущие монолитные железобетонные толщиной 250 мм. Стены с гидроизоляцией и утеплением.

Внутренние стены и стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 мм.

В местах устройства деформационных швов предусмотрены сдвоенные несущие конструкции.

Колонны (пилоны) - монолитные железобетонные сечением 500×500 мм и толщиной $250 \mathrm{mм}$, максимальным шагом $7,2 \mathrm{~m}$, в том числе в конструкции наружных стен.

Перекрытие технического этажа в осях А-Е/1-2, Д-Е/2-6, Г/1-Д/5-6 монолитное железобетонное, толщиной 200 мм, в местах перепада высот предусмотрены балки.

Перекрытия подземной части - монолитные железобетонные, толщиной 200 мм, с обвязочными балками сечением $250 \times 400(\mathrm{~h})$ мм (с учетом плиты перекрытия); локально, по балкам $180 \times 950(\mathrm{~h})$ мм (с учетом плиты перекрытия). В местах перепада высот предусмотрены вертикальные балки толщиной 180 мм.

Лестничные площадки и марши - монолитные железобетонные.
Гидроизоляция - оклеечная, 2 слоя.
Надземная часть. Несущие наружные стены и пилоны - монолитные железобетонные, толщиной 250 мм. Ненесущие наружные стены с поэтажным опиранием: блоки из ячеистого бетона (ГОСТ 31360), плотностью 600 кг/ m^{3}; толщиной $250 \mathrm{mм}$; стены с утеплением и вентилируемой фасадной системой. Конструкции ненесущих стен и фасадной системы учитывают деформации несущих элементов, к которым они крепятся.

Внутренние стены - монолитные железобетонные толщиной 180 мм. В местах устройства деформационных швов предусмотрены сдвоенные несуцие конструкции.

Стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 мм.

Колонны (пилоны) - монолитные железобетонные сечением 500×500 мм и толщиной $250 \mathrm{mм}$.

Перекрытия - монолитные железобетонные, толщиной 180 мм, с обвязочными балками сечением:
$180 \times 370(\mathrm{~h})$ и $250 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия) - в угловых секциях, а также в секции в осях Д-Е/2-4,
$250 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия) (в торцевых и рядовых секциях), с балками (с опиранием на внутренние несущие стены) сечением $180 \times 930(\mathrm{~h})$ мм (с учетом плиты перекрытия). В местах устройства лоджий и балконов предусмотрены перфорация для установки негорючего утеплителя и контурные балки сечением $120 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия).

Покрытия - монолитные железобетонные, толщиной 180 мм, с обвязочными балками сечением 250×370 (h) мм (с учетом плиты перекрытия).

Лестничные площадки - монолитные железобетонные.
Лестничные марши - сборные железобетонные, Z-образные.
Кровля - плоская, рулонная, утепленная, неэксплуатируемая, водоотвод организованный внутренний.

Отметки (относительные=абсолютные):
$0,00=194,55$;
низа фундамента в осях А-Б/1-2 минус $6,55=188,00$;
низа фундамента в осях $\mathrm{B}-\mathrm{Z} / 1-2$ минус $7,55=187,00$;
низа фундамента в осях Б-В/1-2 минус $8,20=186,35$;
низа фундамента в осях Д-Е/1-4 минус $8,90=185,65$;
низа фундамента в осях $Г$-Е/4/1-6 минус $7,00=187,55$;
низа фундамента в осях А-Б/5/1-6 минус $4,15=190,40$;
низа фундамента в осях Б-В/5-6 минус $5,30=189,25$;
низа фундамента в осях В-Г/5-6 минус $4,25=190,30$;
расчетного уровня грунтовых вод от 185,10 до 187,40 .
Котлован глубиной от 3,25 до 5,3 м в естественных откосах с промежуточными бермами.

Kopnyc IV.05. Уровень ответственности - нормальный. Степень огнестойкости - II, класс конструктивной пожарной опасности - С0, класс пожарной опасности строительных конструкций К0. Конструктивная схема -каркасно-стеновая, несущие конструкции из монолитного железобетона классов В25, арматуры классов А240, А500С. Общая жесткость и пространственная неизменяемость здания обеспечиваются совместной работой фундаментов, колонн (пилонов), внутренних и наружных несущих стен, плит перекрытия и покрытия.

В осях Г-Г/1/1-2, Г-Г/1/5-6, предусмотрены деформационные швы.
Подземная часть. Фундаменты - монолитные железобетонные (марки бетона по морозостойкости F 100 , по водонепроницаемости W6), толщиной 900 мм по бетонной (бетон класса B10) подготовке, толщиной 100 мм, на естественном основании: пески средней крупности средней плотности ($\varphi=33^{\circ}, \rho=1,75 \mathrm{r} / \mathrm{cm}^{3}, \mathrm{E}=250 \mathrm{\kappa г} / \mathrm{cm}^{2}$), суглинки полутвердые ($\varphi=23^{\circ}, \rho=2,02$ $г / \mathrm{cm}^{3}, \mathrm{E}=210 \mathrm{\kappa г} / \mathrm{cm}^{2}$). Согласно представленных результатов расчетов, сопротивление грунтов основания $6,6 \mathrm{kr} / \mathrm{cm}^{2}$, давление под подошвой 2,8 кг/см², расчетная осадка от 11,8 до 14,5 см, относительная разность осадок от 0,0011 до 0,0013 . В местах опирания колонн (пилонов) проектом предусмотрено вертикальное (поперечное) армирование. В плите устраиваются приямки. В местах изменения высотных отметок фундаментной плиты предусмотрено устройство нижней плоскости бетона по откосу под углом в 45°.

Наружные стены - несущие монолитные железобетонные толщиной 250 мм. Стены с гидроизоляцией и утеплением.

Внутренние стены и стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 мм.

В местах устройства деформационных швов предусмотрены сдвоенные несущие конструкции.

Колонны (пилоны) - монолитные железобетонные сечением 500x500 мм и толщиной 250 мм, максимальным шагом 7,2 м, в том числе в конструкции наружных стен.

Перекрытие технического этажа в осях Д-Е/2-6, Б-Д/5-6, А-Б/5/1-6 монолитное железобетонное, толщиной 200 мм, в местах перепада высот предусмотрены балки толщиной 180 мм, локально, в осях Д-Е/2-4 предусмотрены балки сечением 180x950(h) мм (с учетом плиты перекрытия), с опиранием на пилоны.

Перекрытие в осях Д-Е/2-6, Б-Д/5-6, А-Б/5/1-6 - монолитное железобетонное, толщиной $200 \mathrm{mм}$, в местах перепада высот предусмотрены балки толщиной 180 мм, локально предусмотрены балки сечением $180 \mathrm{x} 950(\mathrm{~h})$ мм (с учетом плиты перекрытия), с опиранием на пилоны.

Перекрытия подземной части - монолитные железобетонные, толщиной 200 мм, с обвязочными балками сечением $250 \mathrm{x} 400(\mathrm{~h})$ мм (с учетом плиты перекрытия); локально, по балкам 180x950(h) мм (с учетом плиты перекрытия). В местах перепада высот предусмотрены вертикальные балки толщиной 180 мм.

Лестничные площадки и марши - монолитные железобетонные.
Гидроизоляция - оклеечная, 2 слоя.
Надземная часть. Несущие наружные стены и пилоны - монолитные железобетонные, толщиной 250 мм. Ненесущие наружные стены с поэтажным опиранием: блоки из ячеистого бетона (ГОСТ 31360), плотностью 600 кг/ m^{3}; толщиной $250 \mathrm{mм}$; стены с утеплением и вентилируемой фасадной системой. Конструкции ненесущих стен и фасадной системы учитывают деформации несущих элементов, к которым они крепятся.

Внутренние стены - монолитные железобетонные толщиной 180 мм. В местах устройства деформационных швов предусмотрены сдвоенные несущие конструкции.

Стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 мм.

Колонны (пилоны) - монолитные железобетонные сечением 500×500 мм и толщиной $250 \mathrm{mм}$.

Перекрытия - монолитные железобетонные, толщиной 180 мм, с обвязочными балками сечением:
$180 \times 370(\mathrm{~h})$ и $250 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия) - в угловых секциях, а также в осях $\mathrm{E} / 1-5$,
$250 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия) (в торцевых и рядовых секциях), с балками (с опиранием на внутренние несущие стены и пилоны) сечением 180×930 (h) мм (с учетом плиты перекрытия). В местах устройства лоджий и балконов предусмотрены перфорация для установки негорючего утеплителя и контурные балки сечением $120 \times 370(\mathrm{~h})$ мм (с учетом

плиты перекрытия).
Покрытия - монолитные железобетонные, толщиной 180 мм, с обвязочными балками сечением $250 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия).

Лестничные площадки - монолитные железобетоннье.
Лестничные марши - сборные железобетонные, Z-образные.
Кровляя - плоская, рулонная, утепленная, неэксплуатируемая, водоотвод организованный внутренний.

Отметки (относительные=абсолютные):
$0,00=189,50 ;$
низа фундамента в осях А-Б/5/1-6 минус $6,95=182,55$;
низа фундамента в осях Б-В/5-6 минус $8,15=181,35$; низа фундамента в осях Б-В/5-6 минус $7,25=182,25$; низа фундамента в осях В-Г/5-6 минус $8,30=181,20$; низа фундамента в осях $Г-\mathrm{E} / 5-6$ минус $9,00=180,50$; низа фундамента в осях Д-Е/3-6 минус $10,1=179,40$; низа фундамента в осях Д-Е/2-3 минус $7,10=182,40$; низа фундамента в осях $Г / 1-\mathrm{E} / 1-2$ минус $5,60=183,90$; низа фундамента в осях А-B/1-2 минус $5,45=184,05$; низа фундамента в осях В-Г/1-2 минус $6,20=183,30$; расчетного уровня грунтовых вод от 184,30 до 190,20.
Котлован глубиной от 3,0 до 6,1 м в естественных откосах с промежуточными бермами.

Kорпус IV.06. Уровень ответственности - нормальный. Степень огнестойкости - II, класс конструктивной пожарной опасности - С0, класс пожарной опасности строительных конструкций К0. Конструктивная схема -каркасно-стеновая, несущие конструкции из монолитного железобетона классов В25, арматуры классов А240, А500C. Общая жесткость и пространственная неизменяемость здания обеспечиваются совместной работой фундаментов, колонн (пилонов), внутренних и наружных несущих стен, плит перекрытия и покрытия.

Подземная часть. Фундамент - монолитный железобетонный (марки по водонепроницаемости W4, по морозостойкости F100) плитный ростверк, толщиной $900 \mathrm{mм}$, по бетонной подготовке толщиной $100 \mathrm{mм}$ (бетон класса B7,5) на свайном основании - сплошное свайное поле с шагом свай $1,2 \times 1,2$ м, основанием свай служат пески средней крупности средней плотности ($\varphi=33^{\circ}, \rho=1,75 г / \mathrm{cm}^{3}, \mathrm{E}=250$ кг $/ \mathrm{cm}^{2}$), заглубление не менее $3,0 \mathrm{~m}$. Сваи сборные железобетонные (бетон класса В25, марка по водонепроницаемости W6) сечением $300 \times 300 \mathrm{~mm}$, длиной $8,0 \mathrm{~m}$, по серии 1.011.1-10 выпуск 1 . Согласно представленных результатов расчетов расчетная нагрузка на сваю 39,6 тонн, несущая способность свай по грунту не менее 47,0 тонн; расчетная осадка 8,1 см, крен 0,001 . Проектом предусмотрены натурные испытания (динамические и статические) свай. Соединение свай с ростверками шарнирное. В местах опирания колонн (пилонов) проектом

предусмотрено вертикальное (поперечное) армирование. В плите устраиваются приямки. В местах изменения высотных отметок фундаментной плиты предусмотрено устройство нижней плоскости бетона по откосу под углом в 45°.

Наружные стены - несущие монолитные железобетонные толщиной 250 мм. Стены с гидроизоляцией и утеплением.

Внутренние стены и стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 мм.

Колонны (пилоны) - монолитные железобетонные сечением 180×850, $180 \times 900,200 \times 600$ мм, максимальным шагом 6,5 м.

Перекрытие - монолитное железобетонное, толщиной 180 мм. В местах перепада высот предусмотрены вертикальные балки толщиной 180 и 200 мм. В месте устройства лоджии (балкона) предусмотрена перфорация для установки негорючего утеплителя.

Лестничные площадки и марши - монолитные железобетонные.
Гидроизоляция - оклеечная, 2 слоя.
Надземная часть. Несущие наружные стены и пилоны - монолитные железобетонные, толщиной 250 мм. Ненесущие наружные стены с поэтажным опиранием: блоки из ячеистого бетона (ГОСТ 31360), плотностью 600 $\kappa г / \mathrm{m}^{3}$; толщиной $250 \mathrm{mм}$; стены с утеплением и вентилируемой фасадной системой. Конструкции ненесущих стен и фасадной системы учитывают деформации несущих элементов, к которым они крепятся.

Внутренние стены и стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 мм.

Колонны (пилоны) - монолитные железобетонные сечением 180×850, 180×900 мм, максимальным шагом 6,5 м.

Перекрытия 1-3 этажей - монолитные железобетонные, толщиной 180 мм, с обвязочными балками сечением 250×370 (h) мм (с учетом плиты перекрытия). В местах устройства лоджии (балкона) предусмотрена перфорация для установки негорючего утеплителя.

Перекрытия 4-16 этажей и покрытие - монолитные железобетонные, толщиной 180 мм, с обвязочными балками сечением $250 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия). В местах устройства лоджий и балконов предусмотрены перфорация для установки негорючего утеплителя и контурные балки, сечением $120 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия), кроме участка плиты в осях Д/1-Д/3-6.

Лестничные площадки - монолитные железобетонные.
Лестничные марши - сборные железобетонные, Z-образные.
Кровля - плоская, рулонная, утепленная, неэксплуатируемая, водоотвод организованный внутренний.

Отметки (относительные=абсолютные):
$0,00=189,50$;
низа фундамента минус $4,25=185,25$;
низа свай минус $12,35=177,15$;

расчетного уровня грунтовых вод 187,49 .
Котлован глубиной от 3,1 до 9,8 м в естественных откосах.
Kорпус IV.07.Уровень ответственности - нормальный. Степень огнестойкости - II, класс конструктивной пожарной опасности - С0, класс пожарной опасности строительных конструкций К0. Конструктивная схема -каркасно-стеновая, несущие конструкции из монолитного железобетона классов B25, арматуры классов А240, А500C. Общая жесткость и пространственная неизменяемость здания обеспечиваются совместной работой фундаментов, колонн (пилонов), внутренних и наружных несущих стен, плит перекрытия и покрытия.

Подземная часть. Фундамент - монолитный железобетонный (марки по водонепроницаемости W 4 , по морозостойкости F 100) плитный ростверк, толщиной 900 мм, по бетонной подготовке толщиной 100 мм (бетон класса $B 7,5$) на свайном основании - сплошное свайное поле с шагом свай $1,5 \times 1,5 \mathrm{~m}$, основанием свай служат: суглинки полутвердые ($\varphi=25^{\circ}, \rho=2,02$ $г / \mathrm{cm}^{3}, \mathrm{E}=210$ кг $/ \mathrm{cm}^{2}$), пески средней крупности, средней плотности ($\varphi=32^{\circ}$, $\rho=1,89 г / \mathrm{cm}^{3}, \mathrm{E}=260 \mathrm{\kappa г} / \mathrm{cm}^{2}$). Сваи сборные железобетонные (бетон класса B 25 , марка по водонепроницаемости W6) сечением 300×300 мм, длиной 12,0 м, по серии 1.011.1-10 выпуск 1 . Согласно представленных результатов расчетов расчетная нагрузка на сваю по грунту 71,3 тонн, несущая способность свай не менее 65,5 тонн; расчетная осадка $5,5 \mathrm{~cm}$, крен не более 0,001 . Проектом предусмотрены натурные испытания (динамические и статические) свай. Соединение свай с ростверками шарнирное. В местах опирания колонн (пилонов) проектом предусмотрено вертикальное (поперечное) армирование. В плите устраиваются приямки. В местах изменения высотных отметок фундаментной плиты предусмотрено устройство нижней плоскости бетона по откосу под углом в 45°.

Наружные стены - несущие монолитные железобетонные толщиной 250 мм. Стены с гидроизоляцией и утеплением.

Внутренние стены и стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 мм.

Колонны (пилоны) - монолитные железобетонные сечением 180x850, 180×900 мм, максимальным шагом 6,5 м.

Перекрытие - монолитное железобетонное, толщиной 180 мм. В местах перепада высот предусмотрены вертикальные балки толщиной 180 и 200 мм. В месте устройства лоджии (балкона) предусмотрена перфорация для установки негорючего утеплителя.

Лестничные площадки и марши - монолитные железобетонные.
Гидроизоляция - оклеечная, 2 слоя.
Надземная часть. Несущие наружные стены и пилоны - монолитные железобетонные, толщиной 250 мм. Ненесущие наружные стены с поэтажным опиранием: блоки из ячеистого бетона (ГОСТ 31360), плотностью 600 кг/м ${ }^{3}$; толщиной $250 \mathrm{mм}$; стены с утеплением и вентилируемой фасадной системой. Конструкции ненесущих стен и фасадной системы учитывают

деформации несущих элементов, к которым они крепятся.
Внутренние стены и стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 мм.

Колонны (пилоны) - монолитные железобетонные сечением 180×850, 180×900 мм, максимальным шагом 6,5 м.

Перекрытия 1-4 этажей - монолитные железобетонные, толщиной 180 мм, с обвязочными балками сечением 250×370 (h) мм (с учетом плиты перекрытия). В местах устройства лоджии (балкона) предусмотрена перфорация для установки негорючего утеплителя.

Перекрытия 5-16 этажей и покрытие - монолитные железобетонные, толщиной 180 мм, с обвязочными балками сечением $250 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия). В местах устройства лоджий и балконов предусмотрены перфорация для установки негорючего утеплителя и контурные балки, сечением 120×370 (h) мм (с учетом плиты перекрытия), кроме участка плиты в осях Д/1-Д/3-6.

Лестничные площадки - монолитные железобетонные.
Лестничные марши - сборные железобетонные, Z-образные.
Кровля - плоская, рулонная, утепленная, неэксплуатируемая, водоотвод организованный внутренний.

Отметки (относительные=абсолютные):
$0,00=189,60$;
низа фундамента минус $5,00=184,60$;
низа свай минус $17,10=172,50$;
расчетного уровня грунтовых вод 185,30 .
Котлован глубиной от 3,1 до 4,25 м в естественных откосах.
Kорпус IV.08. Уровень ответственности - нормальный. Степень огнестойкости - II, класс конструктивной пожарной опасности - С0, класс пожарной опасности строительных конструкций К0. Конструктивная схема -каркасно-стеновая, несущие конструкции из монолитного железобетона классов В25, арматуры классов А240, А500C. Общая жесткость и пространственная неизменяемость здания обеспечиваются совместной работой фундаментов, колонн (пилонов), внутренних и наружных несущих стен, плит перекрытия и покрытия.

Подземная часть. Фундамент - монолитная железобетонная (марки бетона по морозостойкости F100, по водонепроницаемости W4) плита, толщиной $900 \mathrm{mм}$, по бетонной (бетон класса В7,5) подготовке, толщиной 100 мм, на естественном основании: пески средней крупности средней плотности ($\varphi=33^{\circ}, \rho=1,75 \mathrm{r} / \mathrm{cm}^{3}, \mathrm{E}=250 \mathrm{\kappa г} / \mathrm{cm}^{2}$). Проектом предусмотрена частичная замена слоя слабых грунтов (суглинки с содержанием органических веществ), толщиной не менее $2,0 \mathrm{~m}$, на послойно уплотненные (до коэффициента уплотнения не менее 0,95) песчаные грунты средней крупности, средней плотности с расчетными характеристиками, не менее: $\varphi=35^{\circ}$, $\rho=1,65 г / \mathrm{cm}^{3}, \mathrm{E}=300 \mathrm{\kappa г} / \mathrm{cm}^{2}, \mathrm{c}=0,001 \mathrm{\kappa г} / \mathrm{cm}^{2}$, с геологическим контролем ка-

чества. Согласно представленных результатов расчетов, сопротивление грунтов основания $12,83 \mathrm{\kappa г} / \mathrm{cm}^{2}$, давление под подошвой $2,48 \mathrm{\kappa r} / \mathrm{cm}^{2}$, pacчетная осадка 7,3 см, крен здания не более 0,001 . В местах опирания колонн (пилонов) проектом предусмотрено вертикальное (поперечное) армирование. В плите устраиваются приямки. В местах изменения высотных отметок фундаментной плиты предусмотрено устройство нижней плоскости бетона по откосу под углом в 45°.

Наружные стены - несущие монолитные железобетонные толщиной 250 мм. Стены с гидроизоляцией и утеплением.

Внутренние стены и стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 мм.

Колонны (пилоны) - монолитные железобетонные сечением 180×850, $180 x 900,200 \times 600$ мм, максимальным шагом 6,5 м.

Перекрытие - монолитное железобетонное, толщиной 180 мм. В местах перепада высот предусмотрены вертикальные балки толщиной 180 и 200 мм. В месте устройства лоджии (балкона) предусмотрена перфорация для установки негорючего утеплителя.

Лестничные площадки и марши - монолитные железобетонные.
Гидроизоляция - оклеечная, 2 слоя.
Надземная часть. Несущие наружные стены и пилоны - монолитные железобетонные, толщиной 250 мм. Ненесущие наружные стены с поэтажным опиранием: блоки из ячеистого бетона (ГОСТ 31360), плотностью 600 кг $/ \mathrm{m}^{3}$; толщиной $250 \mathrm{mм}$; стены с утеплением и вентилируемой фасадной системой. Конструкции ненесущих стен и фасадной системы учитывают деформации несущих элементов, к которым они крепятся.

Внутренние стены и стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 мм.

Колонны (пилоны) - монолитные железобетонные сечением 180x850, $180 x 900$ мм, максимальным шагом 6,5 м.

Перекрытия 1-3 этажей - монолитные железобетонные, толщиной 180 мм, с обвязочными балками сечением $250 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия). В местах устройства лоджии (балкона) предусмотрена перфорация для установки негорючего утеплителя.

Перекрытия 4-16 этажей и покрытие - монолитные железобетонные, толщиной 180 мм, с обвязочными балками сечением $250 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия). В местах устройства лоджий и балконов предусмотрены перфорация для установки негорючего утеплителя и контурные балки, сечением $120 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия), кроме участка плиты в осях Д/1-Д/3-6.

Лестничные площадки - монолитные железобетонные.
Лестничные марши - сборные железобетонные, Z-образные.
Кровля - плоская, рулонная, утепленная, неэксплуатируемая, водоотвод организованный внутренний.

Отметки (относительные=абсолютные):
$0,00=185,40$;
низа фундамента минус $4,25=181,15$;
расчетного уровня грунтовых вод 183,60 .
Котлован глубиной от 4,6 до 6,1 м в естественных откосах.
Корпус IV.09. Уровень ответственности - нормальный. Степень огнестойкости - II, класс конструктивной пожарной опасности - C 0 , класс пожарной опасности строительных конструкций К0. Конструктивная схема -каркасно-стеновая, несущие конструкции из монолитного железобетона классов В25, арматуры классов А240, A500C. Общая жесткость и пространственная неизменяемость здания обеспечиваются совместной работой фундаментов, колонн (пилонов), внутренних и наружных несущих стен, плит перекрытия и покрытия.

Подземная часть. Фундамент - монолитный железобетонный (марки по водонепроницаемости W 4 , по морозостойкости F 100) плитный ростверк, толщиной 900 мм, по бетонной подготовке толщиной 100 мм (бетон класса B7,5) на свайном основании - сплошное свайное поле с шагом свай $1,5 \times 1,5$ м, основанием свай служат суглинки полутвердые ($\varphi=25^{\circ}, \rho=2,02$ $г / \mathrm{cm}^{3}, \mathrm{E}=210 \mathrm{\kappa г} / \mathrm{cm}^{2}$). Сваи сборные железобетонные (бетон класса В25, марка по водонепроницаемости W6) сечением 300×300 мм, длиной 12,0 м, по серии 1.011.1-10 выпуск 1 . Согласно представленных результатов расчетов расчетная нагрузка на сваю по грунту 66,9 тонн, несущая способность свай не менее 65,5 тонн; расчетная осадка 5,5 см, крен не более 0,001 . Проектом предусмотрены натурные испытания (динамические и статические) свай. Соединение свай с ростверками шарнирное. В местах опирания колонн (пилонов) проектом предусмотрено вертикальное (поперечное) армирование. В плите устраиваются приямки. В местах изменения высотных отметок фундаментной плиты предусмотрено устройство нижней плоскости бетона по откосу под углом в 45°.

Наружные стены - несущие монолитные железобетонные толщиной 250 мм. Стены с гидроизоляцией и утеплением.

Внутренние стены и стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 мм.

Колонны (пилоны) - монолитные железобетонные сечением 180×850, 180 x 900 мм, максимальным шагом 6,5 м.

Перекрытие - монолитное железобетонное, толщиной 180 мм. В местах перепада высот предусмотрены вертикальные балки толщиной 180 и 200 мм. В месте устройства лоджии (балкона) предусмотрена перфорация для установки негорючего утеплителя.

Лестничные площадки и марши - монолитные железобетонные.
Гидроизоляция - оклеечная, 2 слоя.
Надземная часть. Несущие наружные стены и пилоны - монолитные железобетонные, толщиной 250 мм. Ненесущие наружные стены с поэтажным опиранием: блоки из ячеистого бетона (ГОСТ 31360), плотностью 600

кг/м ${ }^{3}$; толщиной 250 мм; стены с утеплением и вентилируемой фасадной системой. Конструкции ненесущих стен и фасадной системы учитывают деформации несущих элементов, к которым они крепятся.

Внутренние стены и стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 мм.

Колонны (пилоны) - монолитные железобетонные сечением 180×850, 180 x 900 мм, максимальным шагом 6,5 м.

Перекрытия 1-4 этажей - монолитные железобетонные, толщиной 180 мм, с обвязочными балками сечением $250 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия). В местах устройства лоджии (балкона) предусмотрена перфорация для установки негорючего утеплителя.

Перекрытия 5-16 этажей и покрытие - монолитные железобетонные, толщиной 180 мм, с обвязочными балками сечением $250 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия). В местах устройства лоджий и балконов предусмотрены перфорация для установки негорючего утеплителя и контурные балки, сечением $120 \times 370(\mathrm{~h})$ мм (с учетом плиты перекрытия), кроме участка плиты в осях Д/1-Д/3-6.

Лестничные площадки - монолитные железобетонные.
Лестничные марши - сборные железобетонные, Z-образные.
Кровля - плоская, рулонная, утепленная, неэксплуатируемая, водоотвод организованный внутренний.

Отметки (относительные=абсолютные):
$0,00=185,40$;
низа фундамента минус $4,85=180,55$;
низа свай минус $16,95=168,45$;
расчетного уровня грунтовых вод 181,82 .
Котлован глубиной от 3,0 до 4,2 м в естественных откосах. На период строительства от подтопления применяется система строительного водопонижения (открытый водоотлив - откачка воды из приямков-зумпфов, расположенных по периметру котлована).

Представлены результаты общих статических расчетов, подтверждающие прочность и устойчивость основных несущих конструкций. Согласно требованиям Федерального закона от 30 декабря 2009 года № 384-ФЗ представлены расчеты, подтверждающие механическую безопасность основных несущих конструкций, в том числе при аварийных ситуациях (сопротивление несущих конструкций прогрессирующему обрушению). Расчеты выполнены в программном комплексе «ЛИРа-САПР» 2014, ID ключа 816211160. В расчетах несущих конструкций учтены значения нагрузок регламентируемых СНиП 2.01.07-85* и СП 20.13330.2011.

Kорnус IV.10. Уровень ответственности - нормальный. Степень огнестойкости - II, класс конструктивной пожарной опасности - С0, класс пожарной опасности строительных конструкций К0. Конструктивная схема -

каркасно-стеновая, несущие конструкции из монолитного железобетона классов B25, арматуры классов A240, A500C. Общая жесткость и пространственная неизменяемость здания обеспечиваются совместной работой фундаментов, колонн (пилонов), внутренних и наружных несущих стен, плит перекрытия и покрытия.

Подземная часть. Фундаменты - монолитные железобетонные (марки бетона по морозостойкости F 100 , по водонепроницаемости W 4):

плита, толщиной 300 мм, в осях B-E/2-5,
плита, толщиной 400 мм, в осях А-Ж/5-13,
ленточный, сечением 900×300 (h) мм, в осях А-И/1-5;
отдельно стоящие, габаритами $2500 \times 2500 \times 400(\mathrm{~h})$ мм, в осях B/5-8.
Фундаменты устраиваются по бетонной (бетон класса B7,5) подготовке, толщиной 100 мм, на естественном основании: суглинки мягкопластичные ($\varphi=19^{\circ}, \rho=1,96 г / \mathrm{cm}^{3}, \mathrm{E}=100$ кг $/ \mathrm{cm}^{2}, \mathrm{c}=0,21 \mathrm{\kappa г} / \mathrm{cm}^{2}$), пески средней крупности средней плотности ($\varphi=33^{\circ}, \rho=1,75 \mathrm{r} / \mathrm{cm}^{3}, \mathrm{E}=290 \mathrm{\kappa г} / \mathrm{cm}^{2}$). Согласно представленных результатов расчетов: сопротивление грунтов основания $2,8 \mathrm{\kappa г} / \mathrm{cm}^{2}$, давление под подошвой от 1,41 до 1,9 г/cм ${ }^{2}$, расчетная осадка от 1,5 до 2,1 см, относительная разность осадок 0,0002 . В местах опирания колонн (пилонов) проектом предусмотрено вертикальное (поперечное) армирование. В плите устраиваются приямки с сохранением толщины плиты в днище приямка. В местах изменения высотных отметок фундаментной плиты предусмотрено устройство нижней плоскости по откосу под углом в 45°.

Наружные стены - несущие монолитные железобетонные, толщиной 200 мм, с гидроизоляцией и утеплением.

Внутренние стены и стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 mm .

Колонны (пилоны) - монолитные железобетонные сечением $200 \mathrm{x}(750$, 1000), $300 \times 1100 \mathrm{~mm}$.

Перекрытие - монолитное железобетонное, толщиной 200 мм, безбалочное.

Лестничные площадки - монолитные железобетонные. Лестничные марши - из сборных железобетонных элементов.

Гидроизоляция - оклеечная, 2 слоя.
Надземная часть. Несущие наружные стены и пилоны - монолитные железобетонные, толщиной 200 мм. Ненесущие наружные стены с поэтажным опиранием: блоки из ячеистого бетона (ГОСТ 31360), плотностью 600 кг/ ${ }^{3}$; толщиной 250 мм; стены с утеплением и вентилируемой фасадной системой. Конструкции ненесущих стен и фасадной системы учитывают деформации несущих элементов, к которым они крепятся.

Внутренние стены - монолитные железобетонные толщиной 180 мм.
Стены лестнично-лифтовых узлов - монолитные железобетонные толщиной 180 мм.

Колонны (пилоны) - монолитные железобетонные сечением $200 \mathrm{x}(750$, 1000) мм.

Перекрытие 1 этажа - монолитное железобетонное, толщиной 200 мм, в осях Д-Ж/6-14, А-Б/10-13 - 300 мм, с контурной балкой, сечением $200 \times 500(\mathrm{~h})$ мм (с учетом плиты перекрытия), балками, сечением: $200 \times 500(\mathrm{~h})$ мм (с учетом плиты перекрытия) в осях Б-В/5-6, 200x600(h) мм (с учетом плиты перекрытия) в осях Д/6-12. Перекрытие 2 этажа - монолитное железобетонное, толщиной 200 мм, в осях Д-Ж/6-14-300 мм, с контурной балкой, сечением $200 \times 500(\mathrm{~h})$ мм (с учетом плиты перекрытия) в осях А-И/1-5, А/5-9, и балкой, сечением $200 \times 600(\mathrm{~h})$ мм (с учетом плиты перекрытия), в осях Д/6-12.

Покрытие - монолитное железобетонное, толщиной 200 мм, с контурной балкой, сечением $200 \times 500(\mathrm{~h})$ мм (с учетом плиты перекрытия).

Лестничные площадки - монолитные железобетонные. Лестничные марши - из сборных железобетонных элементов.

Кровля - плоская, рулонная, утепленная, неэксплуатируемая, водоотвод организованный внутренний.

Отметки (относительные=абсолютные):
$0,00=191,55$;
низа фундамента в осях B-E/2-5 минус $2,85=188,70$;
низа фундамента в осях А-Ж/5-13 минус $4,20=187,35$;
низа фундамента в осях А-И/1-5 минус $2,85=188,70$;
расчетного уровня грунтовых вод от 177,30 до 185,88 .
Котлован глубиной от 4,95 до 8,3 м в естественных откосах с промежуточными бермами. На период строительства от подтопления применяется система строительного водопонижения (открытый водоотлив - откачка воды из приямков-зумпфов, расположенных по периметру котлована).

Трансформаторная подстануия ТП12 (IV.12)

Сооружение состоит из объемных сборных железобетонных блоков заводской готовности. Блоки монтируются на фундаментную плиту.

Фундамент - монолитная железобетонная (класс бетона B25, марки по морозостойкости F150, по водонепроницаемости W6, арматура классов A240, A500C) плита толщиной 300 мм по бетонной (бетон класса B10) подготовке, толщиной 100 мм, на естественном основании: суглинки тугопластичные ($\varphi=21^{\circ}, \rho=2,01 г / \mathrm{cm}^{3}, \mathrm{c}=0,27 \mathrm{\kappa г} / \mathrm{cm}^{2}, \mathrm{E}=160 \mathrm{\kappa г} / \mathrm{cm}^{2}$).

Согласно представленных результатов расчетов, сопротивление грунтов основания 3,43 кг/см ${ }^{2}$, давление под подошвой 0,21 кг $/ \mathrm{cm}^{2}$, максимальная расчетная осадка менее 1,0 см.

Гидроизоляция - окрасочная, 2 слоя.
Отметки:
$0,00=194,30$;
низа фундаментов минус $1,565=192,735$.
Котлован глубиной до 1,5 м в естественных откосах. На период строительства от подтопления применяется система открытого водоотлива.

Трансформаторная подстануия ТП13 (IV.11)

Сооружение состоит из объемных сборных железобетонных блоков заводской готовности. Блоки монтируются на фундаментную плиту.

Фундамент - монолитная железобетонная (класс бетона B25, марки по морозостойкости F 150 , по водонепроницаемости W6, арматура классов A240, A500C) плита толщиной 300 мм по бетонной (бетон класса В10) подготовке, толщиной $100 \mathrm{mм}$, на естественном основании: суглинки тугопластичные ($\varphi=21^{\circ}, \rho=2,01 \mathrm{\Gamma} / \mathrm{cm}^{3}, \mathrm{c}=0,27 \mathrm{\kappa г} / \mathrm{cm}^{2}, \mathrm{E}=160 \mathrm{\kappa г} / \mathrm{cm}^{2}$).

Согласно представленных результатов расчетов, сопротивление грунтов основания $2,21 \mathrm{kг} / \mathrm{cm}^{2}$, давление под подошвой $0,21 \mathrm{\kappa г} / \mathrm{cm}^{2}$, максимальная расчетная осадка менее 1,0 см.

Гидроизоляция - окрасочная, 2 слоя.
Отметки:
$0,00=194,30$;
низа фундаментов минус $1,565=192,735$.
Котлован глубиной 1,46 м в естественных откосах. На период строительства от подтопления применяется система открытого водоотлива.

Трансформаторная подстаниия ТП16 (IV.14)

Сооружение состоит из объемных сборных железобетонных блоков заводской готовности. Блоки монтируются на фундаментную плиту.

Фундамент - монолитная железобетонная (класс бетона В25, марки по морозостойкости F150, по водонепроницаемости W6, арматура классов A 240 , A 500 C) плита толщиной 300 мм по бетонной (бетон класса В10) подготовке, толщиной $100 \mathrm{mм}$, на естественном основании: глины полутвердые ($\varphi=17^{\circ}, \rho=1,9 г / \mathrm{cm}^{3}, \mathrm{c}=0,33 \kappa г / \mathrm{cm}^{2}, \mathrm{E}=140$ кг $/ \mathrm{cm}^{2}$).

Согласно представленных результатов расчетов, сопротивление грун-
 ная расчетная осадка менее 1,0 см.

Гидроизоляция - окрасочная, 2 слоя.

Отметки:
$0,00=190,00$;
низа фундаментов минус $1,565=188,435$.
Котлован глубиной до 1,5 м в естественных откосах. На период строительства от подтопления применяется система открытого водоотлива.

Трансформаторная подстаниия TII17 (IV.13)

Сооружение состоит из объемных сборных железобетонных блоков заводской готовности. Блоки монтируются на фундаментную плиту.

Фундамент - монолитная железобетонная (класс бетона В25, марки по морозостойкости F150, по водонепроницаемости W6, арматура классов A 240 , A 500 C) плита толщиной $300 \mathrm{mм}$ по бетонной (бетон класса В10) подготовке, толщиной 100 мм. Проектом предусмотрена замена насыпных

грунтов, толщиной не менее 900 мм, на послойно уплотненные (до коэффициента уплотнения 0,95) песчаные грунты средней крупности, средней плотности с расчетными характеристиками, не менее: $\varphi=35^{\circ}, \rho=1,65 \mathrm{r} / \mathrm{cm}^{3}$, $\mathrm{E}=300 \mathrm{\kappa г} / \mathrm{cm}^{2}, \mathrm{c}=0,001 \mathrm{\kappa г} / \mathrm{cm}^{2}$, с геологическим контролем качества. Согласно представленных результатов расчетов, сопротивление грунтов основания $0.8 \mathrm{\kappa г} / \mathrm{cm}^{2}$, давление под подошвой $0,21 \mathrm{kr} / \mathrm{cm}^{2}$, максимальная расчетная осадка менее 1,0 см.

Гидроизоляция - окрасочная, 2 слоя.
Отметки:
$0,00=184,10$;
низа фундаментов минус $1,565=182,535$.
Котлован глубиной до 1,5 м в естественных откосах. На период строительства от подтопления применяется система открытого водоотлива.

Трансформаторная подстанчия TП21 (III.21)

Сооружение состоит из объемных сборных железобетонных блоков заводской готовности. Блоки монтируются на фундаментную плиту.

Фундамент - монолитная железобетонная (класс бетона В25, марки по морозостойкости F150, по водонепроницаемости W6, арматура классов A240, A500C) плита толщиной 300 мм по бетонной (бетон класса B10) подготовке, толщиной $100 \mathrm{mм}$. Проектом предусмотрена замена мягкопластичных глин ($\varphi=18^{\circ}, \rho=1,74$ г/cm ${ }^{3}, \mathrm{E}=30$ кг $/ \mathrm{cm}^{2}, \mathrm{c}=0,17$ кг $/ \mathrm{cm}^{2}$), толщиной не менее 500 мм, на послойно уплотненные (до коэффициента уплотнения $0,95)$ песчаные грунты средней крупности, средней плотности с расчетными характеристиками, не менее: $\varphi=35^{\circ}, \rho=1,65 г / \mathrm{cm}^{3}, \mathrm{E}=300 \mathrm{\kappa г} / \mathrm{cm}^{2}, \mathrm{c}=0,001$ кг/см², с геологическим контролем качества. Согласно представленных результатов расчетов, сопротивление грунтов основания $2,14 \mathrm{kг} / \mathrm{cm}^{2}$, давление под подошвой $0,21 \mathrm{\kappa г} / \mathrm{cm}^{2}$, максимальная расчетная осадка менее 1,0 cM.

Гидроизоляция - окрасочная, 2 слоя.
Отметки:
$0,00=193,50 ;$
низа фундаментов минус $1,565=191,935$.
Котлован глубиной до 1,5 м в естественных откосах. На период строительства от подтопления применяется система открытого водоотлива.

Распределительная трансформаторная подстануия (PTII2) (V.III)
Уровень ответственности - нормальный, коэффициент надежности по ответственности принят равным I. Степень огнестойкости IV, класс конструктивной пожарной опасности - С0, огнестойкость несущих конструкций - R15. Конструктивная схема - стеновая, несущие конструкции из монолитного железобетона класса B25, арматуры классов А240, A500C. Общая жесткость и пространственная неизменяемость здания обеспечивают-

ся совместной работой фундамента, внутренних и наружных несущих стен, плит перекрытия и покрытия.

Подземная часть
Фундамент - монолитная железобетонная (марка бетона по морозостойкости F150, по водонепроницаемости W4) плита толщиной 250 мм по бетонной подготовке (бетон класса B7,5), толщиной 100 мм. Проектом предусмотрена замена мягкопластичных глин ($\varphi=18^{\circ}, \rho=1,771 г / \mathrm{cm}^{3}, \mathrm{c}=0,17$ кг/ $\mathrm{cm}^{2}, \mathrm{E}=30 \mathrm{\kappa г} / \mathrm{cm}^{2}$), толщиной не менее 500 Mm , на послойно уплотненные (до коэффициента уплотнения 0,95) песчаные грунты средней крупности, средней плотности, с расчетными характеристиками, не менее: $\varphi=35^{\circ}$, $\rho=1,65 г / \mathrm{cm}^{3}, \mathrm{c}=0,001 \mathrm{\kappa г} / \mathrm{cm}^{2}, \mathrm{E}=300 \mathrm{\kappa г} / \mathrm{cm}^{2}$, с геологическим контролем качества. Согласно представленных результатов расчетов, сопротивление грунтов основания $7,99 \mathrm{\kappa г} / \mathrm{cm}^{2}$, давление под подошвой $0,34 \mathrm{\kappa г} / \mathrm{cm}^{2}$, максимальная расчетная осадка 2,7 см.

Наружные стены - монолитные железобетонные толщиной 160 мм, с гидроизоляцией.

Внутренние стены - монолитные железобетонные, толщиной 160 мм.
Колонны - из стальных профилей гнутых замкнутых сварных квадратного и прямоугольного сечения $100 \times 100 \times 5$ мм (ГОСТ 30245), максимальным шагом $3,10 \mathrm{~m}$. В местах опирания на фундамент колонны усилены ребрами жесткости из стальных листов толщиной 8 мм. В местах опирания балок, на колоннах устраиваются «капители» в виде ребер жесткости из стальных листов толщиной 8 мм.

Перекрытие - монолитное железобетонное, толщиной 160 мм, по стальным балкам из двутавра № 20Б1, устройство которых предусмотрено по стальным колоннам. В местах опирания на колонны в балки ввариваются ребра жесткости из стальных листов, толщиной 8 мм.

Гидроизоляция конструкций, соприкасающихся с грунтом - оклеечная, 2 слоя.

Надземная часть

Наружные и внутренние несущие стены - монолитные железобетонные толщиной 160 мм.

Покрытие - монолитное железобетонное, безбалочное, толщиной 160 MM.

Кровля - плоская, рулонная, утепленная, неэксплуатируемая, водоотвод организованный наружный.

Отметки:

$0,00=185,55$
низа фундаментов минус $2,24=183,31$.
расчетного уровня грунтовых вод от 181,20 до 181,50 .
Котлован глубиной 2,19 м в естественных откосах. На период строительства от подтопления применяется система открытого водоотлива.

Водозаборный узел ВЗУ (V.I)

Уровень ответственности - нормальный. Класс конструктивной пожарной опасности - С0. Конструктивная схема - каркасная, несущие конструкции из монолитного железобетона класса В 25 , арматуры классов A240 и A500C. Общая жесткость и пространственная неизменяемость обеспечиваются совместной работой вертикальных несущих конструкций, фундаментов, покрытия. Часть сооружения в осях 5-6 обвалована.

Фундаменты - монолитные железобетонные (марки по водонепроницаемости W8, по морозостойкости F100) плиты толщиной 400 мм по бетонной (бетон класса B7,5) подготовке толщиной 100 мм, на естественном основании: суглинки тугопластичные ИГЭ-2 ($\varphi=21^{\circ}, \rho=2,05$ г $/ \mathrm{cm}^{3}, \mathrm{E}=190$ кг/см ${ }^{2}$), пески средней крупности, средней плотности ИГЭ-3 ($\varphi=30^{\circ}, \rho=1,76$ $г / \mathrm{cm}^{3}, \mathrm{E}=240 \mathrm{\kappa г} / \mathrm{cm}^{2}$). Согласно представленных результатов расчетов, сопротивление грунтов основания $3,91 \mathrm{kг} / \mathrm{cm}^{2}$, давление под подошвой от 0,42 до 1,63 кг/см² , расчетная осадка фундамента здания 8,2 мм, расчетная осадка фундамента резервуара - 10,9 мм относительная разность осадков $0,00017 \mathrm{~B}$ конструкции фундаментных плит предусмотрены приямки. По оси 5 за внешней гранью наружных стен проектом предусмотрено устройство консольных участков фундаментных плит с контрфосами, толщиной 300 мм. В осях А-Д/4-5 предусмотрен деформационный шов.

Гидроизоляция несущих конструкций, соприкасающихся с грунтом оклеечная, 2 слоя.

Наружные несущие стены - монолитные железобетонные (марки по водонепроницаемости W6, по морозостойкости F100), толщиной 200 мм по оси 4 , толщиной 400 мм до отметки минус 0,11 , и толщиной 200 мм выше отметки минус 0,11 , с гидроизоляцией и утеплением до верха фундаментной плиты. В осях А-Д/1-4 монолитные железобетонные стены предусмотрены с отметки минус 2,00 до минус 0,11 . В осях $\mathrm{A}-\mathcal{L} / 5-6$ монолитные железобетонные стены предусмотрены с отметки минус 1,00 до 4,55 .

Ненесущие наружные стены из сэндвич-панелей, толщиной 150 мм, предусмотрены в осях A-Д/1, A, Д/1-4, по стальным несущим колоннам.

Внутренние стены здания до отметки минус 0,11 - несущие, монолитные железобетонные, толщиной 200 мм.

Внутренние стены резервуара - несущие, монолитные железобетонные, толщиной 300 мм.

Колонны в осях A -Д/1-4 на отметке минус 0,11 - монолитные железобетонные, сечением 400×400 мм, шагом $5,0 \times 5,0 \mathrm{~m}$, в том числе в конструкции наружных стен в виде пилястр. В колоннах предусмотрена установка фундаментных болтов M20 для крепления вышележащих стальных колонн.

Плита пола на отметке минус 0,11 - монолитная железобетонная, толщиной 150 мм.

Колонны в осях А-Д/1-4 на отметке минус 0,15 - стальные (класс стали С245) из прокатных двутавров № 20К1, шагом $5,0 \mathrm{x} 5,0 \mathrm{~m}$ (соосно с нижележащими колоннами).

Колонны в осях А-Д/4 на отметке минус 0,11 - монолитные железобе-

тонные, сечением $400 \times 400 \mathrm{mм}$, шагом $5,0 \mathrm{~m}$, в конструкции стены в виде пилястр.

Покрытие А-Д/1-4 - профиль стальной гнутый с трапециевидными гофрами (профнастил) типа Н75-750-0,7 по прогонам из стальных (класс стали С245) прокатных швеллеров № 16 , шагом 1,0 м (вдоль цифровых осей). Устройство прогонов предусмотрено по стальным (класс стали С245) перекрестным балкам из прокатного двутавра № 20Б1, опирающихся на колонны. Узел сопряжения балки с колонной выполнен жестким, в обоих направлениях момент на колонну передается через горизонтальные пластины, толщиной 12 мм, поперечную силу воспринимают сварные швы, которыми обваривают пластину, толщиной $8 \mathrm{mм}$. Согласно представленных результатов расчетов, прогиб балок из двутавра № 20Б1, с учетом подвески тали, до 0,8 см, прогонов до $1,6 \mathrm{~cm}$. Соединения конструкций сварные, монтажные - на сварке и болтовые (класс точности В, класс прочности 5,6 , и высокопрочных болтах класса прочности 5). Проектом предусмотрен ультразвуковой контроль качества сварных швов. Также предусмотрены мероприятия по недопущению развинчивания гаек. Предусмотрены антикоррозионная защита стальных конструкций и огнезащита до требуемого предела огнестойкости.

Кровля в осях А-Д/1-4 - плоская, неэсплуатируемая, с утеплением, паро- и гидроизоляцией. Водосток наружный организованный.

Покрытие в осях А-Д/5-6 - монолитное железобетонное, толщиной 250 мм, по балкам, расположенным вдоль цифровых осей, сечением 300×600 (h) мм (с учетом толщины плиты), с шагом 1,8 м. В осях А-Д/5 монолитный железобетонный парапет сечением 300×1200 (h) мм (от верха плиты). Покрытие с мембранной гидроизоляцией, утеплением.

Лестничный марш - из стального прокатного швеллера № 16 и ступеней из рифленого листа (ГОСТ 8568-77).

Монорельс для установки электрической тали, грузоподъемностью 1 тонна - из стального прокатного двутавра № 24М (ГОСТ 19425-74 дв), крепление которого предусмотрено к стальным балкам из прокатного двутавра № 20Б1.

Кровля малоуклонная, утепленная, неэксплуатируемая, водоотвод организованный наружный.

Отметки (относительные=абсолютные):
$0,00=188,25$;
низа фундамента минус $2,40=185,85$;
низа фундамента минус $1,46=186,79$;
расчетного уровня грунтовых вод от 178,15 до 184,03 .
Котлован глубиной до 1,65 м в естественных откосах.
На период строительства от подтопления применяется система открытого водоотлива с помощью водосборных канав и зумпфов.

Локальные очистные сооружения поверхностных сточных вод ЛОС (V.II)

Локальные очистные сооружения состоят из отдельно расположенного заглубленного резервуара и двух очистных сооружений заводской готовности.

Резервуар. Фундамент - монолитная железобетонная (класс бетона B25, марки по морозостойкости F50, по водонепроницаемости W6, арматура класса A400) плита толщиной 300 мм по бетонной (бетон класса В7,5) подготовке толщиной 100 мм на свайном основании. Сваи железобетонные, длиной $7,0 \mathrm{~m}$, сечением $300 \times 300 \mathrm{mм}$, по серии $1.011 .1-10$, максимальным шагом 2,5 м. Основанием нижнего конца свай служат суглинки полутвердые ($\varphi=19^{\circ}, \rho=2,1 г / \mathrm{cm}^{3}, c=0,37 \mathrm{\kappa г} / \mathrm{cm}^{2}, \mathrm{E}=320 \mathrm{\kappa г} / \mathrm{cm}^{2}$). Согласно представленных результатов расчетов, несущая способность свай по грунту от 45 тонн, расчетная нагрузка на сваю 41 тонна, максимальная расчетная осадка 55,0 мм, относительная разность осадок не превышает 0,001 . Проектом предусмотрены натурные испытания свай. В конструкции фундаментной плиты предусмотрены приямки, с толщиной днища и стенок 300 мм. В местах изменения высотных отметок фундаментной плиты предусмотрено устройство нижней плоскости бетонной подготовки по откосу под углом в 45°. В местах опирания колонн предусмотрено увеличение толщины плиты (в виде «банкеток») на 300 мм.

Наружные стены - несущие монолитные железобетонные (марки по водонепроницаемости W6, по морозостойкости F100), толщиной 300 мм, с гидроизоляцией с внешней и внутренней сторон. В местах сопряжения наружных стен между собой, фундаментной плитой и покрытием, предусмотрено устройство галтелей с внутренней стороны резервуара.

Колонны - монолитные железобетонные, сечением 400×400 мм, шагом $4,8 \times 6,75 \mathrm{~m}$.

Внутренние стены - монолитные железобетонные, толщиной 300 мм, расположенные по осям $2,3,4$, переменной высоты.

Покрытие - монолитные железобетонные, толщиной 300 мм, по перекрестным балкам, сечением $400 \times 600(\mathrm{~h})$ мм (с учетом толщины плиты), с опиранием на колонны и наружные стены.

Гидроизоляция конструкций, соприкасающихся с грунтом - окрасочная, 2 слоя. Гидроизоляция конструкций, соприкасающихся с наполнением резервуара, окрасочная, 1 слой.

Павильон в осях $b^{\prime}-A^{\prime} 11^{\prime}-2{ }^{\prime}$. Конструкция пола - стальные листы толщиной 4,0 мм с ромбическим рифлением (ГОСТ $8568-77^{*}$) по балкам из стальных труб прямоугольного сечения (ГОСТ 8645-68) 100x50x5 мм.

Несущие конструкции каркаса, стойки, раскосы - стальные трубы прямоугольного сечения (ГОСТ 8645-68) 100x50x5 мм. Ограждающие конструкции - 3 -слойные стеновые сэндвич-панели.

Покрытие - сэндвич-панели типа ПКБ, по стальным балкам из стальных профилей гнутых замкнутых сварных квадратного и прямоугольного сечения (ГОСТ 30245) 50×5 мм.

Отметки:
$0,00=173,17$;
низа фундамента минус $0,30=172,87$;
расчетного уровня грунтовых вод от $173,05-174,70$
Котлован глубиной до 4,0 м, в естественных откосах.
На период строительства от подтопления применяется система открытого водоотлива с помощью водосборных канав и зумпфов.

Фундаментьь очистньих сооружений ЛОС
Фундамент - монолитная железобетонная (класс бетона B25, марки по морозостойкости F 50 , по водонепроницаемости W 4 , арматура классов $\mathrm{A} 240, \mathrm{~A} 500 \mathrm{C}$) плита толщиной $250 \mathrm{mм}$ по бетонной (бетон класса B7,5) подготовке толщиной 100 мм. Проектом предусмотрена замена насыпных грунтов, толщиной не менее $500 \mathrm{mм}$, на послойно уплотненные (до коэффициента уплотнения 0,95) песчанные грунты средней крупности, средней плотности, с расчетными характеристиками, не менее: $\varphi=35^{\circ}, \rho=1,65$ г $/ \mathrm{cm}^{3}$, $\mathrm{c}=0,001 \mathrm{\kappa г} / \mathrm{cm}^{2}, \mathrm{E}=300$ кг $/ \mathrm{cm}^{2}$, с геологическим контролем качества.

Гидроизоляция - окрасочная, 2 слоя.
Отметки:
$0,00=173,17$;
низа фундамента $1,23=174,40$;
расчетного уровня грунтовых вод $173,05-174,70$.
Котлован глубиной до 1,4 м, в естественных откосах.
На период строительства от подтопления применяется система открытого водоотлива с помощью водосборных канав и зумпфов.

Представлены результаты общих статических расчетов, подтверждающие прочность и устойчивость основных несущих конструкций. Согласно требованиям Федерального закона от 30 декабря 2009 года № 384 -ФЗ представлены расчеты, подтверждающие механическую безопасность основных несущих конструкций, в том числе при аварийных ситуациях (сопротивление несущих конструкций прогрессирующему обрушению). Расчеты выполнены в программном комплексе «ЛИРа-САПР2014», ID ключа 746879400. В расчетах несущих конструкций учтены значения нагрузок регламентируемых СНиП 2.01.07-85* и СП 20.13330.2011.

[^0]ной системы с вентилируемым воздушным зазором и минераловатными плитами плотностью $145 \mathrm{kr} / \mathrm{m}^{3}$ толщиной 160 мм в составе сертифицированной фасадной системы с тонким штукатурным слоем;

- цокольных стен корпусов $I V .03, I V .05$ - IV. 09 - плитами экструзионного пенополистирола толщиной 200 мм;
- цокольных стен водозаборного узла V.I - плитами пенополистирола толщиной 100 мм;
- стен в грунте в корпусах IV.03, IV. 05 - IV. 09 на глубину 1,5 м - плитами экструзионного пенополистирола толщиной 200 мм;
- стен в грунте в дошкольной образовательной организачии IV. 10 на глубину 2,0 м - плитами экструзионного пенополистирола толщиной 150 мм;
- стен водозаборного узла V.I - минераловатными плитами толщиной 150 мм в составе сертифицированных трехслойных металлических панелей;
- внутренних стен водозаборного узла V.I- минераловатными плитами толщиной 150 мм;
- перекрытий над эркером корпусов IV.03, IV. 05 - IV. 09 - минераловатными плитами толщиной 200 мм;
- перекрытий под нависающими частями корпусов IV.03, IV. 05 - IV. 09 - минераловатными плитами толщиной $220 \mathrm{mм}$;
- перекрытий над техническим подпольем корпусов $I V .03$, IV. 05 IV. 09 плитами экструзионного пенополистирола толщиной 50 мм;
- перекрытий под входными площадками корпусов IV.03, IV. 05 - IV. 09 - плитами экструзионного пенополистирола толщиной 150 мм;
- покрытий корпусов IV.03, IV. 05 - IV. 09 и дошкольной образовательной организачии $I V .10$ - минераловатными плитами общей толщиной 210 мм и толщиной 200 мм над лестничными клетками;
- покрытий водозаборного узла V.I - минераловатными плитами толщиной 50 мм плитами и плитами экструзионного пенополистирола толщиной 30 мм.

Светопрозрачные конструкции:

- блоки оконные и балконные дверные жилой части корпусов $I V .03$, IV. 05 - IV. 09 и дошкольной образовательной организаиии IV. 10 - по ГОСТ 30674 из ПВХ профилей с двухкамерным стеклопакетом, приведенным сопротивлением теплопередаче не менее $0,56 \mathrm{~m}^{2 . \circ} \mathrm{C} / \mathrm{B}$ т;
- блоки оконные водозаборного узла - по ГОСТ 30674, из ПВХ профилей с однокамерным стеклопакетом, приведенным сопротивлением теплопередаче $0,35 \mathrm{~m}^{2 .}{ }^{\circ} \mathrm{C} / \mathrm{B}$;
- окна и витражи нежилой части корпусов $I V .03, \operatorname{IV} .05$ - IV. 09 - по ГОСТ 21519, из комбинированных алюминиевых профилей, с двухкамерным стеклопакетом с теплоотражающим покрытием стекла, приведенным сопротивлением теплопередаче не менее $0,56 \mathrm{~m}^{2 .}{ }^{\circ} \mathrm{C} / В$ т.
- входные двери корпусов IV.03, IV. $05-I V .09$ - с остеклением, металлические, деревянные утепленные минераловатными плитами толщиной

50 мм, приведенным сопротивлением теплопередаче не менее 0,75 $\mathrm{m}^{2 .}{ }^{\circ} \mathrm{C} / \mathrm{B}$ т.

В качестве энергосберегающих мероприятий предусмотрено:

- установка приборов учета и контроля потребляемого тепла системами отопления; автоматическое регулирование систем отопления, вентиляции; применение отопительных приборов с термостатическим регулированием теплоотдачи; индивидуальный учет потребленной тепловой энергии; теплоизоляция трубопроводов отопления;
- высокоэффективное насосное оборудование; водосберегающая сантехническая арматура; индивидуальный учет расходов воды; теплоизоляция трубопроводов горячего водоснабжения;
- по электроснабжению - применение светильников с люминесцентными лампами; единая система диспетчеризации и управления инженерными системами и освещением; применение устройств компенсации реактивной мощности, электродвигателей с преобразователями частоты; поквартирный учет потребления электроэнергии многотарифными счетчиками.

Энергетические паспорта на здания выполнены по форме СНиП 23-02-2003. Величина расчетного значения удельного расхода тепловой энергии на отопление составляет: корпус $I V .03 \mathrm{q}_{\mathrm{h}}^{\text {des }}=52,5$ кДж $/\left(\mathrm{m}^{2}{ }^{.0} \mathrm{C} \cdot\right.$ сут) ; корпус $I V .05 \mathrm{q}_{\mathrm{h}}{ }^{\text {des }}=49,3 \kappa$ дж $/\left(\mathrm{m}^{2} .{ }^{\circ} \mathrm{C} \cdot\right.$ сут) $)$ корпус $I V .06 \mathrm{q}_{\mathrm{h}}{ }^{\text {des }}=58,5 \kappa$ Дж/($\mathrm{m}^{2} .0$ $\mathrm{C} \cdot \mathrm{cyт})$; корпус $I V .07 \mathrm{q}_{\mathrm{h}}^{\text {des }}=57,5 \mathrm{\kappa}$ (ж $/\left(\mathrm{m}^{2} .{ }^{0} \mathrm{C} \cdot\right.$ сут $)$; корпус $I V .08 \mathrm{q}_{\mathrm{h}}{ }^{\text {des }}=58,6$ кДж $/\left(\mathrm{m}^{2.0} \mathrm{C} \cdot\right.$ сут $)$; кориус $I V .09 \mathrm{q}_{\mathrm{h}}{ }^{\text {des }}=57,5$ кДж $\left(\mathrm{m}^{2} .0 \mathrm{C} \cdot\right.$ сут $)$, что не более нормируемого значения для жилых зданий $\mathrm{q}_{\mathrm{h}}{ }^{\text {reg }}=70$ кДж/(м ${ }^{2}{ }^{\circ} \mathrm{C} \cdot$ сут). Beличина расчетного значения удельного расхода тепловой энергии на отопление доикольной образовательной организачии IV. 10 составляет $q_{\mathrm{h}}{ }^{\text {des }}=$ $183 \mathrm{\kappa BT} \cdot ч / \mathrm{M}^{2}$, что не более нормируемого значения $\mathrm{q}_{\mathrm{h}}{ }^{\text {reg }}=230 \mathrm{\kappa BT} \cdot \mathrm{\varphi} / \mathrm{m}^{2}$.

Отклонение расчетного удельного расхода тепловой энергии на отопление здания за отопительный период от нормируемого значения СНиП 23-02-2003 соответствует классу энергетической эффективности - «В» (высокий).

Требуемое снижение удельного потребления энергоресурсов, согласно Постановлению Правительства РФ от 25 января 2011 года № 18, выполняется.
4.5. Сведения об инженерном оборудовании, о сетях инженернотехнического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений

Наружные сети электроснабжения. Внешнее электроснабжение жилой застройки, выполнено на основании технических условий (ТУ) от 04 февраля 2014 года № 34-08/1579-4425, выданных ОАО «МОЭСК». Срок

действия настоящих технических условий составляет 3 года, со дня заключения договора от 01 марта 2014 года № ИА-14-302-87(937415).

Максимальная мощность присоединяемых энергопринимающих устройств в соответствии с ТУ составляет 6000 кВт.

Категория надежности - II (вторая).
Напряжение присоединения - 10 кВ.
Источниками электроснабжения микрорайона на напряжение 10 кВ служат проектируемые пункты секционирования СП № 1 и СП № 2, размещаемые на границе земельного участка.

В соответствии с ТУ (п. 10.1.1 и 10.1.2) проектирование и строительство СП № 1 и СП № 2 и кабельных линий на напряжение 10 кВ для подключения их к источнику электроснабжения ПС 220/110/10 кВ № 840 «Омега» выполняется электроснабжающей организацией.

Расчетная нагрузка жилого комплекса, приведенная к шинам 10 кВ СП № 1 и СП № 2 составляет: 5908 кВт, 6352,7 кВА.

Для электроснабжения застройки проектными решениями предусмотрено строительство распределительного пункта, совмещенного с трансформаторной подстанцией РТП2 (номер по генеральному плану: V.III) и пять трансформаторных подстанций ТП-12 (IV.12), ТП-13 (IV.11), ТП-16 (IV.14), TП-17 (IV.13), ТП-21 (III.21).. Каждый объект предназначен для трансформации переменного тока напряжением 10 кВ в переменный ток напряжением 0,4 кВ и распределения электроэнергии на напряжении 10 кВ (РТП) и 0,4 кВ.

Сети электроснабжения $10 \mathrm{\kappa B}$. От СП до проектируемого РТП2 прокладываются в земле взаимно резервируемые кабельные линии электроснабжения на напряжение $10 \mathrm{\kappa B}$.

Для присоединения РТП2 к СП используется силовой одножильный кабель с алюминиевой экранированной жилой, в изоляции из сшитого полиэтилена, в усиленной оболочке из полиэтилена (АПвПу-10); сечение жилы 240 кв.мм.

От проектируемого РТП2 до проектируемых трансформаторных подстанций (ТП) прокладываются в земле взаимно резервируемые кабельные линии электроснабжения на напряжение 10 кВ. Проектируемые ТП включены в сеть 10 кВ по двухлучевой тупиковой схеме.

Для присоединения ТП к РУ 10 кВ РТП2 используется силовой одножильный кабель с алюминиевой экранированной жилой, в изоляции из сшитого полиэтилена, в усиленной оболочке из полиэтилена (АПвПу-10); сечение жилы 120 кв.мм.

Сети электроснабжения $0,4 \mathrm{\kappa B}$. Проектными решениями предусматривается электроснабжение вводно-распределительных устройств (ВРУ) потребителей застройки.

Электроснабжение проектируемых зданий осуществляется от следующих ТП:

строения № IV.01, № IV. 10 (ДДУ), от TIT-12 (IV.12);

строения № IV.02, № III. 15 (школа), наружное освещение от TГI-13 (IV.11);

строения № IV.04, № IV.6, № IV.7, наружное освещение от TП-16 (IV.14);

строения № IV.05, № IV.8,№ IV. 9 от TП-17 (IV.13);
строение № IV.03, наружное освещение от-TП-21 (III.21);
техническая зона (водозаборная насосная станция, канализационная насосная станция, очистные сооружения ливневых стоков) от РТП-2 (V.III).

Для электроснабжения потребителей предусмотрена прокладка от источника электроснабжения (низковольтные щиты проектируемых БРТП и ТІІ) до ВРУ взаимно резервируемых кабельных линий напряжением 1 кВ, выполненных четырехжильным кабелем в изоляции из сшитого полиэтилена с медными жилами марки ВБбШв.

Кабели с сечением жил: $240,185,150120$ и 95 кв.мм.
Прокладка кабелей выполнена в земле.
РTП2 и TП. РТП и ТП запроектированы отдельностоящими.
В РТП2 (V.III) устанавливается 2 масляных трансформатора мощностью 630 кВА каждый, напряжением $10+/-2 \times 2,5 \% / 0,4$ кВ, схема и группа соединений $\Delta /$ Yо-11 (ТМГ-630/10); комплектное распределительное устройства 10 кВ, из 18 ячеек с вакуумными выключателями, устройствами релейной защиты и автоматики (номинальный ток каждой ячейки 630 A), распределительное устройство 0,4 кВ с выключателями на отходящих линиях для присоединения нагрузки, ящики, выключатели, светильники, провода, кабели) поставляется комплектно со строительными модулями.

Для наладки и проверки работоспособности высоковольтных ячеек предусматривается соответствующее проверочное устройство, обеспеченное устройством бесперебойного питания, и комплект программного обеспечения.

Для обеспечения работы защит в РТП2 устанавливается источник бесперебойного питания с двумя дополнительными батареями.

Оборудование РТП2 заземляется. Выполняется заземляющее устройство (искусственный заземлитель).

Электрооборудование, устанавливаемое в заводских условиях, сертифицировано. В каждом из TП12 (IV.12), TП13 (IV.11), TП16 (IV.14), TП17 (IV.13), ТП21 (III.21) устанавливается по 2 масляных трансформатора мощностью 1250 кВА каждый, напряжением $10+/-2 \times 2,5 \% / 0,4$ кВ, схема и группа соединений $\Delta /$ Үo-11 (ТМГ-1250/10).

Все остальное электрооборудование: распределительные устройства 10 кВ (RM-6 или аналогичное) и 0,4 кВ (ЩРНВ ли аналогичное), ящики, выключатели, светильники, провода, кабели поставляется комплектно со строительными модулями.

Оборудование ТП заземляется. Выполняется заземляющее устройство (искусственный заземлитель).

Электрооборудование, устанавливаемое в заводских условиях, сертифицировано.

Наружное освещение. Освещение территории выполняется светильниками ЖКУ-20-70 с лампами мощностью 70 Вт, установленными на 19 опорах ОТЗФ-7,0-1,5 (К) и на 14 опорах ОТ2Ф-4,5-1,5 (К).

Категория надежности электроснабжения проектируемого освещения II. Средняя горизонтальная освещенность составила 6 и 10 ЛК для территории детского сада.

Сеть наружного освещения запроектирована кабелем в земле марки ВБбШв-1 (четырехжильный бронированный кабель с медными жилами) сечением 4×70 и 4×50 кв.мм (питающая сеть) и 4×16 кв.мм (распределительная сеть).

Электроснабжение внутриквартального освещения предусмотрено от 1 ВРШ-НО, расположенного в (БРП) пристройке к ТП-16, и от $2 \mathrm{BP} Ш-Н О$, расположенного в БРП ТП-13 Электроснабжение окружной дороги предусмотрено от ЗВРШ-НО, расположенного в БРП ТП-21.

Электроснабжение освещения дошкольной образовательной организации (ДОО) предусмотрено от 1 ШНО, запитанного от ВРУ ДОО.

Электроснабжение освещения школы предусмотрено от $2 Ш Н О$, запитанного от ВРУ школы.

Сеть наружного освещения запроектирована четырехжильным кабелем с алюминиевыми жилами; тип кабеля АВВбШв для прокладки в земле, сечение жилы 25 и 16 кв.мм.

Для освещения территории используются светильники с натриевыми лампами ЖКУ15-150-101 и ЖТУ06-100-005. Светильники торшерного типа ЖТУ10-100-001 устанавливаются на несиловые трубчатые прямостоечные опоры НІІ-4,0/5,0-02-ц высотой 4 м. Светильники ЖКУ15-150-101 устанавливаются на несиловые прямостоечные круглоконические опоры НПК-7,0/8,5-02-ц высотой 7 м.

Электрические нагрузка наружного освещения:
1ВРШ-НО активная мощность $21,85 \mathrm{\kappa B}$ т, полная мощность 26 кВА; 2ВРШ-НО активная мощность $30,5 \mathrm{\kappa B}$, полная мощность 35,8 кВА;
3ВРШ-НО активная мощность $12,2 \mathrm{\kappa B}$, полная мощность 13,18 кВА.
Внутреннее электроснабжение. Для распределения электроэнергии по потребителям разного функционального назначения, обособленных в административно-хозяйственом отношении в каждом здании предусмотрены самостоятельные вводно-распределительные устройства ВРУ-0,4 кВ:

корпус IV. 03 - ВРУ3.1, ВРУ 3.2, ВРУ 3.3 (жилые секции), ВРУ 3.4 аренда, ЩР-ИТП от ВРУ 3.2. Определенные проектом нагрузки электроприемников составляют $\mathrm{Py}=5410$ кВт/Pp=934 кВт, Sед=1005 кВА, $\operatorname{Cos} \phi=0,93$;

корпус IV. 05 - ВРУ5.1, ВРУ 5.2, ВРУ 5.3 (жилые секции), ВРУ 5.4 аренда; ЩР-ИТП от ВРУ 5.2. Определенные проектом нагрузки электро-

приемников составляют $\mathrm{Py}=6034$ кВт $/ \mathrm{Pp}=999$ кВт, Sед=1074 кВА, $\operatorname{Cos} \phi=0,93 ;$

корпус IV. 06 - ВРУ6 (жилье), ЩР-ИТП от ВРУ6. Определенные проектом нагрузки электроприемников составляют $\mathrm{Py}=1078,9$ кВт $/ \mathrm{Pp}=269,7$ кВт, Sед $=290 \kappa В А, \operatorname{Cos} \phi=0,93$;

корпус IV. 07 - ВРУ7 (жилье), ЩР-ИТП от ВРУ7. Определенные проектом нагрузки электроприемников составляют $\mathrm{Py}=1081,8 \mathrm{\kappa B} 7 / \mathrm{Pp}=272,6$ кВт, Sед $=293$ кВА, $\operatorname{Cos} \phi=0,93$;

корпус IV. 08 - ВРУ8 (жилье), ЩР-ИТП от ВРУ8. Определенные проектом нагрузки электроприемников составляют $\mathrm{Py}=1130,2 \kappa \mathrm{BT} / \mathrm{Pp}=286,0$ кВт, Sед=308 кВА, $\operatorname{Cos} \phi=0,93$;

корпус IV. 09 - ВРУ9 (жилье), ЩР-ИТП от ВРУ9. Определенные проектом нагрузки электроприемников составляют $\mathrm{Py}=1051,8$ кВт $/ \mathrm{Pp}=242,6$ кВт, $\operatorname{Seд}=261$ кВА, $\operatorname{Cos} \phi=0,93$;

дошкольная образовательная организачия IV. 10 - ВРУ10 (ДОУ). Определенные проектом нагрузки электроприемников составляют $P y=516,8 \kappa B т / P p=231,5 \kappa B т$, Sед $=248,9 \kappa B A, \operatorname{Cos} \phi=0,93 ;$

ВРУ-ИТП (ДОО). Определенные проектом нагрузки электроприемников составляют $\mathrm{Py}=423,1 \mathrm{\kappa Bт} / \mathrm{Pp}=374,1 \kappa В$ т, $\mathrm{Seд}=382 \kappa В А, \operatorname{Cos} \phi=0,98$;

водозаборный узел - ВРУ. Определенные проектом нагрузки электроприемников составляют на 1 очередь $\mathrm{Py}=152,9$ кВт $/ \mathrm{Pp}=105,9$ кВт, $\operatorname{Cos} \phi=0,96$; Определенные проектом нагрузки электроприемников составляют на $1+2$ очередь $\mathrm{Py}=270,4 \mathrm{\kappa Bт} / \mathrm{Pp}=151,8 \kappa В т, \operatorname{Cos} \phi=0,96$;

ВРУ локальных очистных сооружений. Определенные проектом нагрузки электроприемников составляют на 1 очередь $\mathrm{Py}=12,6 \mathrm{\kappa BT} / \mathrm{Pp}=10,1$ $\kappa \mathrm{Bx}, \operatorname{Cos} \phi=0,8$. Определенные проектом нагрузки электроприемников с учетом всех этапов строительства составляют $\mathrm{Py}=23,7 \mathrm{\kappa Bт} / \mathrm{Pp}=18,9$ кВт, $\operatorname{Cos} \phi=0,8$.

Категория по надежности электроснабжения - II.
К I категории относятся электроприемники эвакуационного освещения, противодымная вентиляция, приборы пожарной сигнализации, насосная пожаротушения, система оповещения о пожаре, огнезадерживающие клапаны, клапаны дымоудаления, лифты, системы автоматики и управления зданием, слаботочные системы, насосы и автоматика ИТП, насосы хо-зяйственно-бытовой и дренажной канализации.

Для приема, учета и распределения электроэнергии комплекса применяются семнадцать самостоятельных вводно-распределительных устройств ВРУ-0,4 кВ, расположенных на 1 этажах (ВЗУ, ЛОС) и в подвалах жилых зданий и ДОО.

Компенсация реактивной мощности предусматривается в составе ВРУ жилых зданий, ДОО, ВРУ-ВЗН.

Компенсация реактивной мощности не предусматривается во ВРУ лОС.

Все ВРУ корпусов и ДОО оборудованы двумя вводными панелями с переключателями-разъединителями, распределительными панелями с ав-

томатическими выключателями, устройством ABP для обеспечения непрерывной работы потребителей I категории. Каждое ВРУ запитано по двум взаимно-резервируемым кабельным линиям от своей БКТП.

ВРУ ВЗУ оборудовано двухсекционным вводным устройством с системой АВР на вводе, для обеспечения непрерывной работы потребителей I категории. ВРУ ЛОС оборудовано вводно распределительной панелью с переключателем на вводе, группой учета электрической энергии и автоматическими выключателями на отходящих линиях.

Автоматизированный учёт электроэнергии производится электронными счётчиками активной энергии, установленными в отдельных шкафах учета и в специальных отсеках ВРУ.

Электроснабжение квартир жилых секций осуществляется от устройства этажного распределительного УЭРМ, которое устанавливается на этажах, в межквартирных коридорах.

Заявленная нагрузка на квартиры принята 14,0 кВт, расчетная нагрузка на квартиру принята 11,2 кВт. Ввод в квартиры - однофазный.

Внутренние электросети - провода и кабели с медными жилами, с изоляцией, не поддерживающей горение, в основном кабели $\mathrm{BB} Г \mathrm{Hr}-\mathrm{LS}$, ВВГнг(A)-LSLTx (для ДОО). Для потребителей противопожарных систем (I категории) предусмотрены кабели BB нг-FR LS, BBГнг(A)-FRLSLTx (для ДОО) расчетных сечений.

Электроосвещение - светильники с люминесцентными лампами и энергосберегающими источниками света и металлогалогенные для наружной подсветки. Освещение коридоров, лестничных клеток и лифтовых холлов осуществляется централизованно из диспетчерской. Управление освещением лестничных площадок, имеющих естественное освещение, входов и номерного знака предусмотрено автоматическим, с помощью фотореле. Управление светильниками аварийного освещения предусматривается автоматическими выключателями со щитов аварийного освещения. Управление освещением коридоров автостоянки и зоны хранения автомобилей осуществляется централизованно из диспетчерской.

Для повышения уровня электробезопасности используются УЗО, разделительные трансформаторы $220 / 36 \mathrm{~B}$, уравнивание потенциалов (основная и дополнительная системы), молниезащита - по III уровню защиты, а также зануление (система заземления $\mathrm{TN}-\mathrm{S}$ на стороне $0,4 \mathrm{\kappa B}$) электроустановок.

Внутриплощадочные сети хозяйственно-питьевого и противопожарного водоснабжения. Лицензия Департамента по недропользованню по Центральному федеральному округу на пользование недрами от 10 октября 2013 года № МСК 05063 ВП. Техническое задание заказчика - Приложение № 1 к Договору от 13 июля 2015 года № 01-25 Июн 2015.

Источником водоснабжения является водозаборный узел (ВЗУ), pacположенный на территории жилого комплекса.

Для обеспечения хозяйственно-питьевых нужд и нужд внутреннего пожаротушения предусмотрена прокладка двух водоводов из полиэтиленовых труб диаметром 315 мм от насосной станции 2-го подъема ВЗУ до распределительной камеры на внутриплощадочной кольцевой водопроводной сети. Внутриплощадочная кольцевая сеть предусмотрена из полиэтиленовых труб диаметрами $140,180,200,225$ и 315 мм с учетом перспективного подключения 2 -й очереди строительства. От кольцевой сети предусмотрена прокладка водопроводных вводов из полиэтиленовых труб диаметрами $75,90,110,125$ мм в одну или две нитки.

На внутриквартальной сети предусмотрено строительство камер из монолитного бетона и колодцев из сборных элементов по типовым чертежам, в которых предусмотрена установка технологической арматуры и пожарных гидрантов

Прокладка сетей и вводов предусмотрена открытым способом.
Наружное пожаротушение обеспечивается пожарными гидрантами, расположенными на кольцевой водопроводной сети.

Водозаборный узел производительностью 3000 куб.м/сут. Техническое задание на проектирование водозаборного узла, Приложение № 1 к Договору от 13 июля 2015 года № 01-25 Июн 2015.

Источником водоснабжения являются подольско-мячковский и касимовский горизонты подземных вод, обеспечивающие указанную в техническом задании производительность водозаборного узла.

Проектом предусмотрено строительство водозаборного узла, включающего, на полную производительность, 4 водозаборные скважины (2 - рабочие, 2 - резервные), оборудованные глубинными насосами; установку очистки воды; два резервуара чистой воды; насосную станцию 2 -го подъема; насосную установку пожаротушения.

Глубина скважин, относящихся к подольско-мячковскому водоносному горизонту, составляет 154 м, динамический уровень воды в скважинах 96 м. Исходная вода подольско-мячковского горизонта характеризуется повышенным содержанием железа, мутности, жесткости, лития, фторидов.

Глубина скважин, относящихся к касимовскому водоносному горизонту, составляет 93 м, динамический уровень воды в скважинах - 67 m . Исходная вода касимовского горизонта характеризуется повышенным содержанием железа, марганца, мутности, жесткости.

Артезианские скважины оборудованы глубинными насосами «Grundfos», каждый из которых оснащен системой частотного регулирования, позволяющей осуществлять поддержку постоянного давления, предотвращение гидравлических ударов, снижение пусковых токов, экономию электроэнергии.

В связи с тем, что водоносные горизонты расположены на разных уровнях и различен состав загрязнений в исходной воде этих горизонтов, проектом предусмотрена раздельная очистка воды на двух параллельных линиях, различная для каждого из горизонтов.

Линия очистки водьт подольско-мячковского горизонта включает в себя водомерный узел, комплекс пропорционального дозирования, блок напорной аэрации, станцию обезжелезивания, установки обратного осмоса, емкость сбора концентрата и насосная станция повышения давления после установки обратного осмоса, установки обратного осмоса доочистки концентрата.

Исходная вода, поднятая скважинным насосом, проходит водомерный узел, включающий в себя фильтр-грязевик, водосчетчик, запорнорегулирующую арматуру и приборы КИПиА.

С помощью комплекса пропорционального дозирования, перед блоком напорной аэрации, предусмотрен ввод в очищаемую воду гипохлорита натрия для более эффективного окисления общего железа в воде. Комплекс состоит из насосов-дозаторов, дозировочного контейнера объемом 200 л и импульсного водосчетчика, подающего сигнал на насос-дозатор, который производит впрыск реагента в исходную воду.

После водомерного узла вода проходит через два параллельно установленных блока напорной аэрации, каждый из которых состоит из аэрационной колонны и $2-\mathrm{x}$ компрессоров. Аэрационная колонна предназначена для увеличения поверхности контакта и равномерного перемешивания воды и воздуха с целью более интенсивного окисления содержащегося в воде железа. Избыток воздуха удаляется из воды при помощи водовоздушного клапана.

Далее аэрированная вода для удаления нерастворимых оксидов железа подается на станцию обезжелезивания, состоящую из десяти параллельно работающих фильтров обезжелезивания. Производительность каждого фильтра - 12,0 м/час, размеры фильтра (высота/диаметр) $-2400 / 1235$ мм. Промывка фильтров производится автоматически, поочередно по сигналу таймеров клапанов управления, установленных на каждом фильтре. Промывные воды от станции обезжелезивания сбрасываются в ливневую канализацию. Работа фильтров полностью автоматизирована и исключает необходимость постоянного присутствия обслуживающего персонала.

Для снижения жесткости воды, удаления из нее лития, фторидов осветленная вода подается в четыре параллельно работающих установки обратного осмоса производительностью по очищенной воде до $10,0 \mathrm{~m}^{3} /$ час, после которых очищенная вода - пермеат - направляется в резервуары очищенной воды, а концентрат с повышенным содержанием солей поступает в накопительную емкость сбора концентра. Производительность установки - $10 \mathrm{~m}^{3} /$ час по пермеату, подача воды на установку - не менее 25 $\mathrm{m}^{3} /$ час, габаритные размеры - $4000 \times 2000 \times 1300 \mathrm{mм}$. Промывка установок производится осветленной водой после фильтров обезжелезивания. Работа установок полностью автоматизирована.

После установок обратного осмоса вода с повышенным содержанием солей - концентрат - поступает в две емкости сбора концентрата объемом $10 \mathrm{~m}^{3}$ каждая. После каждой емкости сбора концентрата предусмотрены две насосные станции повышения давления, которыми концентрат подает-

ся на доочистку - на две параллельно работающие установки обратного осмоса производительностью по очищенной воде до $5,0 \mathrm{~m}^{3} /$ час. Промывка установки обратного осмоса доочистки концентрата производится чистой водой после насосной станции второго подъема. Для предотвращения осаждения солей жесткости на мембранных элементах установок обратного осмоса в поток воды перед установками дозируется антискалант (ингибитор осадкообразования). В комплект входит четыре комплекса дозирования ингибитора. В состав одного комплекса входит насос-дозатор, peaгентная емкость объемом 200 литров для приготовления рабочего раствора и реагент-антискалант. Работа установок обратного осмоса доочистки концентрата полностью автоматизирована. Очищенная на установке обратного осмоса вода поступает в резервуары очищенной воды, а концентрат с повышенным содержанием солей сбрасывается в ливневую канализацию.

Линия очистки водьұ касимовского горизонта включает в себя водомерный узел, комплекс пропорционального дозирования, блок напорной аэрации, станцию обезжелезивания.

Исходная вода, поднятая скважинным насосом, проходит водомерный узел, включающий в себя фильтр-грязевик, водосчетчик, запорнорегулирующую арматуру и приборы КИПиА.

С помощью комплекса пропорционального дозирования, перед блоком напорной аэрации, предусмотрен ввод в очищаемую воду гипохлорита натрия для более эффективного окисления общего железа в воде. Комплекс состоит из насосов-дозаторов, дозировочного контейнера объемом 200 л и импульсного водосчетчика, подающего сигнал на насос-дозатор, которым производится вспрыск реагента в исходную воду.

После водомерного узла вода проходит через два параллельно установленных блока напорной аэрации, каждый из которых состоит из аэрационной колонны и $2-х$ компрессоров. Аэрационная колонна предназначена для увеличения поверхности контакта и равномерного перемешивания воды и воздуха с целью более интенсивного окисления содержащегося в воде железа. Избыток воздуха удаляется из воды при помощи водовоздушного клапана.

Далее аэрированная вода для удаления нерастворимых оксидов железа подается на станцию обезжелезивания, состоящую из четырех параллельно работающих фильтров обезжелезивания. Производительность каждого фильтра - 12,0 м/час, размеры фильтра (высота/диаметр) $-2400 / 1235$ мм. Промывка фильтров производйтся автоматически, поочередно по сигналу таймеров клапанов управления, установленных на каждом фильтре. Промывные воды от станции обезжелезивания сбрасываются в ливневую канализацию. Работа фильтров полностью автоматизирована и исключает необходимость постоянного присутствия обслуживающего персонала.

Далее очищенная вода после установок обратного осмоса подольско-
 касимовского горизонта с общим расходом до $46 \mathrm{~m}^{3} /$ час поступают в общий коллектор. Из общего коллектора вода с общим расходом до 141
$\mathrm{m}^{3} /$ час подается в два резервуара хозяйственно-питьевого и противопожарного водоснабжения каждый объемом $800 \mathrm{~m}^{3}$. Каждый резервуар оборудован подводящим и отводящим трубопроводами, переливным устройством, спускным трубопроводом, вентиляционным устройством, лестницей, лю-ками-лазами для прохода людей и транспортирования оборудования. Заполнение резервуаров водой происходит через затвор дисковый поворотный с электроприводом при подаче на него сигнала от контроллера, отслеживающего уровень воды в резервуаре.

Резервуары чистой воды оборудованы фильтрами поглотителями в целях защиты питьевой воды от загрязнений, содержащихся в воздухе, поступающем в резервуары при их эксплуатации.

Из резервуаров очищенная вода поступает во всасывающий коллектор двух насосных станций второго подъема. Общая производительность насосных станций, в соответствии с техническим заданием, составляет $255,33 \mathrm{~m}^{3} /$ час. Каждая насосная смонтирована на раме и оснащена необходимой арматурой, шкафом управления и гидробаком и состоит из трех вертикальных центробежных насосов. Два насоса рабочие, один резервный. Два насоса каждой насосной станции оснащены собственным частотным регулятором.

Далее очищенная вода поступает на четыре параллельно установленные ультрафиолетовые (УФ) бактерицидные установки. При помощи УФ установок производительностью до $100 \mathrm{~m}^{3} /$ час каждая производится обеззараживание очищенной воды перед подачей ее потребителям.

Очищенная обеззараженная вода через узел учета расхода воды подается по двум водоводам в разводящую сеть жилого комплекса.

Для противопожарных нужд проектом предусмотрено насосное оборудование, обеспечивающее заявленную максимальную производительность и требуемый напор на пожаротушение. К установке приняты четыре насоса: два насоса - рабочие, два насоса - резервные. Управление пожарными насосами осуществляется от шкафа управления. Одновременно с включением пожарных насосов должны автоматически отключаться все насосы другого назначения.

Для отвода воды при аварийном затоплении здания предусмотрен водосборный приямок с погружным насосом, работающим в автоматическом режиме по уровню воды в приямке. Проектом предусмотрены два дренажных насоса, 1 - рабочий, 1 - резервный. Из приямка вода отводится в сеть дождевой канализации.

Оборудование водозаборного узла вводится в эксплуатацию поэтапно в три очереди строительства:

Первая очередь строительства: станция обезжелезивания исходной воды артезианской скважины касимовского горизонта, состоящая из одного блока напорной аэрации с двумя компрессорами, одного комплекса дозирования с импульсным водосчетчиком и двумя параллельно работающими фильтрами обезжелезивания, насосная станция второго подъема,

насосы на пожаротушение-2 шт.(1 насос - основной; 1 насос - резервный), четыре УФ установки производительностью до $100 \mathrm{~m}^{3} /$ час каждая.

Вторая очередь строительства: станция обезжелезивания исходной воды артезианской скважины подольско-мячковского горизонта, состоящая из одного работающего блока напорной аэрации с двумя компрессорами, одного комплекса дозирования с импульсным водосчетчиком и пяти параллельно работающих фильтров обезжелезивания, установка обратного осмоса, насосная станция повышения давления, емкость сбора концентрата, установка обратного осмоса доочистки концентрата.

Третья очередь строительства: станция обезжелезивания исходной воды артезианской скважины подольско-мячковского горизонта, состоящая из одного работающего блока напорной аэрации с двумя компрессорами, одного комплекса дозирования с импульсным водосчетчиком и пяти параллельно работающих фильтров обезжелезивания, установка обратного осмоса, насосная станция повышения давления, емкость сбора концентрата, установка обратного осмоса доочистки концентрата, станция обезжелезивания исходной воды артезианской скважины касимовского горизонта, состоящая из одного блока напорной аэрации с двумя компрессорами, одного комплекса дозирования с импульсным водосчетчиком и двумя параллельно работающими фильтрами обезжелезивания, насосная станция второго подъема, насосы на пожаротушение- 2 шт.(1 насос - основной; 1 насос - резервный).

Внутреннее водоснабжение. Водоснабжение предусмотрено:
В каждый жилой дом IV.03, IV. 05 - ввод двумя трубами 125 мм, на вводе водомерный узел со счетчиком диаметром 40 мм и обводной линией с электрозадвижкой. Счетчики холодной и горячей воды с импульсным выходом устанавливаются на вводе в квартиры и нежилые помещения.

В каждый жилой дом IV.06, IV.07, IV.08, IV. 09 - ввод двумя трубами диаметром 110 мм, на вводе водомерный узел со счетчиком диаметром 40 мм и обводной линией с электрозадвижкой. Счетчики холодной и горячей воды с импульсным выходом устанавливаются на вводе в квартиры и нежилые помещения.

ДОО - ввод двумя трубами диаметром 110 мм, на вводе водомерный узел со счетчиком диаметром 40 мм и обводной линией с электрозадвижкой.

Расчетные расходы воды составляют:
Жилой дом IV. 03 общий расход на вводе - 171,27 куб.м/сут; 23,42 куб.м/ч; 8,49 л/с, в т.ч.:

- расход горячей воды - 62,71 куб.м/сут; 12,45 куб.м/ч; 4,63 л/с;
- расход тепла на ГВС - 0,747 Гкал/ч;
- расход на внутреннее пожаротушение - 2 струи по 2,6 л/с;

Жилой дом IV. 05 общий расход на вводе - 182,27 куб.м/сут; 16,22 куб.м/ч; 6,16 л/с, в т.ч.:

- расход горячей воды - 68,08 куб.м/сут; 10,41 куб.м/ч; 3,97 л/с;
- расход тепла на ГВС - 0,625 Гкал/ч;
- расход на внутреннее пожаротушение - 2 струи по 2,6 л/с;

Жилой дом IV. 06 общий расход на вводе - 32,22 куб.м/сут; 4,28 куб.м/ч; 1,97 л/с, в т.ч.:

- расход горячей воды - 11,60 куб.м/сут; 2,79 куб.м/ч; 1,28 л/с;
- расход тепла на ГВС - 0,167 Гкал/ч;
- расход на внутреннее пожаротушение - 3 струи по 2,9 л/с;

Жилой дом IV. 07 общий расход на вводе - 33,82 куб.м/сут; 4,49 куб.м/ч; 2,00 л/с, в т.ч.:

- расход горячей воды - 12,24 куб.м/сут; 2,92 куб.м/ч; 1,31 л/с;
- расход тепла на ГВС - 0,175 Гкал/ч;
- расход на внутреннее пожаротушение - 3 струи по 2,9 л/с;

Жилой дом IV. 08 общий расход на вводе - 32,78 куб.м/сут; 4,36 куб.м/ч; 1,96 л/с, в т.ч.:

- расход горячей воды - 11,82 куб.м/сут; 2,84 куб.м/ч; 1,28 л/с;
- расход тепла на ГВС - 0,170 Гкал/ч;
- расход на внутреннее пожаротушение - 3 струи по 2,9 л/с;

Жилой дом IV. 09 общий расход на вводе - 33,82 куб.м/сут; 4,49 куб.м/ч; 2,00 л/с, в т.ч.:

- расход горячей воды - 12,24 куб.м./сут; 2,92 куб.м/ч; 1,31 л/с;
- расход тепла на ГВС - 0,175 Гкал/ч;
- расход на внутреннее пожаротушение - 3 струи по 2,9 л/с;

ДОО общий расход на вводе $-37,97$ куб.м/сут; 5,83 куб.м/ч; 2,69 л/с, в т.ч.:

- расход горячей воды - 6,48 куб.м/сут; 2,75 куб.м/ч; 1,40 л/с;
- расход тепла на ГВС - 0,170 Гкал/ч;
- расход на внутреннее пожаротушение - 1 струя 2,6 л/с.

Система хозяйственно-противопожарного водопровода жилых домов и ДОО с нижней разводкой, закольцована по стоякам и магистралям, к пожарным стоякам подключены пожарные краны диаметром 50 мм, расход на внутреннее пожаротушение: жилье дома IV.03, IV. 05 - 2 струи по 2,6 л/с; жилые дома IV.06, IV.07, IV.08, IV. 09 - 3 струи по 2,9 л/с; ДОО - 1 струя 2,6 л/с.

Горячее водоснабжение от ИТП, внутренняя система горячего водоснабжения с нижней разводкой и циркуляцией по стоякам и магистралям. Для мини-кафе и продовольственного магазина предусмотрено резервирование ГВС локальными накопительными водонагревателями. Резервирование ГВС для ДОО предусмотрено от электрокотла в ИТП.

У водоразборных приборов предусмотрены регуляторы давления холодной и горячей воды, у пожарных кранов предусмотрены диафрагмы.

Требуемые напоры:
Жилой дом IV. 03 - хозяйственно-питьевое и горячее водоснабжение 96,5 м.в.ст., противопожарное водоснабжение - 95,0 м.в.ст.;

Жилой дом IV. 05 - хозяйственно-питьевое и горячее водоснабжение 99,6 м.в.ст., противопожарное водоснабжение - 98,6 м.в.ст.;

Жилой дом IV. 06 - хозяйственно-питьевое и горячее водоснабжение 97,6 м.в.ст., противопожарное водоснабжение - 101,5 м.в.ст.;

Жилой дом IV. 07 - хозяйственно-питьевое и горячее водоснабжение 96,6 м.в.ст., противопожарное водоснабжение - 100,5 м.в.ст.;

Жилой дом IV. 08 - хозяйственно-питьевое и горячее водоснабжение 97,6 м.в.ст., противопожарное водоснабжение - 101,5 м.в.ст.;

Жилой дом IV. 09 - хозяйственно-питьевое и горячее водоснабжение 96,6 м.в.ст., противопожарное водоснабжение - 100,5 м.в.ст.;

ДОО - хозяйственно-питьевое и горячее водоснабжение - 51,6 м.в.ст., противопожарное водоснабжение - 56,1 м.в.ст.

Требуемые расходы и напоры обеспечиваются насосными станциями:
Жилой дом IV. 03

- хозяйственно-питьевое водоснабжение - $\mathrm{Q}=8,49$ л/с; $\mathrm{H}=60,50$ м.в.ст;
- противопожарное водоснабжение - $\mathrm{Q}=13,83$ куб.м/ч; $\mathrm{H}=60,4$ м.в.ст;

Жилой дом IV. 05

- хозяйственно-питьевое водоснабжение - $\mathrm{Q}=6,16 \mathrm{л} / \mathrm{c} ; \mathrm{H}=56,60$ м.в.ст;
- противопожарное водоснабжение - $\mathrm{Q}=11,36$ куб.м/ч; $\mathrm{H}=55,6$ м.в.ст;

Жилой дом IV. 06

- хозяйственно-питьевое водоснабжение - $\mathrm{Q}=1,97$ л/с; $\mathrm{H}=58,60$ м.в.ст;
- противопожарное водоснабжение - $\mathrm{Q}=39,50$ куб.м/ч; $\mathrm{H}=65,6$ м.в.ст; Жилой дом IV. 07
- хозяйственно-питьевое водоснабжение - $\mathrm{Q}=2,0$ л $/ \mathrm{c} ; \mathrm{H}=55,60$ м.в.ст;
- противопожарное водоснабжение - $\mathrm{Q}=40,30$ куб.м/ч; $\mathrm{H}=64,9$ м.в.ст;

Жилой дом IV. 08

- хозяйственно-питьевое водоснабжение - $\mathrm{Q}=1,96$ л $/ \mathrm{c} ; \mathrm{H}=54,60$ м.в.ст;
- противопожарное водоснабжение - $\mathrm{Q}=40,50$ куб.м/ч; $\mathrm{H}=64,8$ м.в.ст;

Жилой дом IV. 09

- хозяйственно-питьевое водоснабжение $-\mathrm{Q}=2,0$ л/с; $\mathrm{H}=52,60$ м.в.ст;
- противопожарное водоснабжение - $\mathrm{Q}=41,4$ куб.м/ч; $\mathrm{H}=64,3$ м.в.ст; ДОО
- хозяйственно-питьевое водоснабжение - $\mathrm{Q}=2,69$ л/с; $\mathrm{H}=15,60$ м.в.ст;
- противопожарное водоснабжение - $\mathrm{Q}=19,58$ куб.м/ч; $\mathrm{H}=21,2$ м.в.ст.

Внутренние системы хозяйственно-питьевого, горячего и противопожарного водоснабжения монтируются из стальных труб по ГОСТ 326275*, ГОСТ 10704-91, разводка в санузлах выполняется полипропиленовыми трубами.

Внутриплощадочнье сети водоотведения. Бьтовая канализация. Технические условия АО «Мосводоканал» на водоснабжение и канализование от 04 апреля 2013 года № 21-0680/13.

В соответствии с техническими условиями отвод бытовых стоков от жилого комплекса с. п. Кутузовское должен быть осуществлен в существующий подводящий коллектор диаметром 2000 мм Ново-Куркинской КНС.

Поскольку присоединиться к подводящему коллектору в самотечном режиме не представляется возможным, проектом предусмотрено строительство канализационной насосной станции (КНС) с присоединением ее напорных трубопроводов к ранее запроектированным ООО «Новый проект» напорным трубопроводам от КНС жилого комплекса в деревне Брехово. Подключение предусмотрено в камере переключений, строительство которой, прокладка напорных трубопроводов от КНС жилого комплекса с. п. Кутузовское и устройство на них колодца с расходомерами учтены проектом внеплощадочных сетей бытовой канализации, разработанным ООО «Новый проект» и получившим положительное заключение ООО «Оборонэкспертиза» от 25 июля 2014 года № 4-1-1-0105-14.

Отвод хозяйственно-бытовых сточных вод от зданий жилого комплекса предусмотрен путем устройства выпусков из труб НПВХ диаметром 110 мм во внутриплощадочную сеть.

Прокладка внутриплощадочной канализационной сети предусмотрена из полипропиленовых труб диаметром 200-315 мм. В южной части площадки 1-й очереди строительства предусмотрено перспективное подключение 2 -й очереди строительства.

В местах выпусков из зданий и на углах поворота трассы на запроектированной сети предусмотрено строительство канализационных колодцев из сборных железобетонных элементов.

Работа выпусков и сети предусмотрена в самотечном режиме, прокладка их предусмотрена открытым способом.

Канализачионная насосная стануия (КНС). Производительность КНС принята с учетом перспективного подключения 2-й очереди строительства.

Принята комплектная насосная станция заводского изготовления укомплектованная насосным оборудованием, технологическими трубопроводами и арматурой, системами электрификации и автоматизации. Насосная подземного исполнения, цилиндрической формы, диаметром 2,4 м, глубиной 7,0 м. Для 1 -й очереди строительства предусмотрено 2 рабочих насоса (работающих поочередно), 1 резервный и 1 резервный на - складе. При подключении второй очереди строительства два насоса будут работать одновременно. Насосы приняты с частотным регулированием для поддержания постоянного напора в напорном трубопроводе в камере переключения. На подающем трубопроводе предусмотрена установка сетчатой корзины для сбора крупногабаритных загрязнений.

Для монтажа и демонтажа технологического оборудования, для проведения ремонтных и профилактических работ предусмотрено применение грузоподъемного оборудования.

Внутренняя канализачия. Расчетный объем бытовых сточных вод: Жилой дом IV. 03 - 158,0 куб.м/сут, 8,49 л/с, Жилой дом IV. $05-169,32$ куб.м/сут, 7,76 л/с; Жилой дом IV. 06 - 29,0 куб.м/сут, 3,57 л/с, Жилой дом IV. 07 - 30,59 куб.м/сут, 4,49 л/с, Жилой дом IV. 08 - 29,55 куб.м/сут, 4,36

л/с, Жилой дом IV. 09 - 30,59 куб.м/сут, 4,49 л/с; ДОО - 17,28 куб.м/сут, $4,29 \pi / \mathrm{c}$.

Проектом предусмотрены следующие системы канализации с раздельными выпусками в наружные сети: самотечная система бытовой канализации от жилой части здания; самотечная система бытовой канализации от нежилых помещений; самотечная система производственной канализации; самотечная система производственной канализации от прачечной в ДОО, на выпуске предусмотрен автоматизированный канализационный затвор.

Внутренние сети бытовой канализации здания монтируются из раструбных канализационных труб ПВХ с установкой на стояках противопожарных муфт. Магистральные трубопроводы в ДОО монтируются из чугунных безраструбных канализационных труб.

Внутриплочадочные сети водоотведения. Дождевая канализачия. Проектом предусмотрен сбор поверхностного стока с территории жилого комплекса, очистка его на локальных очистных сооружениях и сброс очищенного дождевого стока в реку Горетовку по согласованию с администрацией с.п. Кутузовское.

Дождевые и талые воды с кровель зданий удаляются путем устройства выпусков из труб HПВХ диаметром 110 мм во внутриплощадочную сеть дождевой канализации.

Для отвода поверхностных стоков с прилегающей территории предусмотрена установка дождеприемных колодцев в пониженных точках территории в соответствии с вертикальной планировкой. Отвод от дождеприемных колодцев предусмотрен в ту же внутриплощадочную сеть.

Внутриплощадочная самотечная сеть дождевой канализации предусмотрена из полипропиленовых труб диаметром от 200 до 1200 мм. Предусмотрены два основных коллектора дождевой канализации вдоль автодорог на западной и восточной границе участка. К данным коллекторам подключаются внутриквартальные сети согласно очередности строительства. Диаметры рассчитаны на пропуск расхода дождевых стоков с территории всего жилого комплекса. На данной стадии предусмотрено перспективное подключение дальнейших очередей строительства.

Предусмотрено строительство водосточных и дождеприемных колодцев из сборных железобетонных элементов.

Работа выпусков и сети предусмотрена в самотечном режиме, прокладка их предусмотрена открытым способом.

I очередь строительства очистных сооружений К2. Технологические решения. Техническое задание - Приложение № 1 к Договору подряда на выполнение проектных работ от 13 мая 2013 года № 238 -ПИР - на проектирование очистных сооружений поверхностных сточных вод.

В соответствии с заданием на проектирование предусмотрено строительство сооружений для очистки поверхностных сточных вод для первой очереди жилого комплекса. В состав сооружений входят:

- подземная регулирующая емкость с установленным в ней погружным насосом и надземным павильоном;
- сооружения предварительной очистки (песколовка, отстойник, нефтеуловитель);
- сооружение доочистки (фильтр сорбционный безнапорный).

Поверхностные стоки поступают по подающему коллектору в регулирующую емкость, первая секция которой является разделительной камерой, в которой предусмотрен приямок с установленным в нем погружным насосом. Устанавливается один рабочий насос без резервного (резервный хранится на складе), так как в регулирующей емкости предусмотрен аварийный сброс. В случае, если расход воды превышает расчетную производительность насоса, начинают последовательно наполняться секции регулирующей емкости. При заполнении всех секций избыточное количество стоков отводится через аварийный сброс, конструкция которого позволяет задерживать всплывающие загрязнения. При уменьшении расхода дождевых вод регулирующая емкость постепенно опорожняется, т.к. понижение уровня воды в разделительной камере приводит к открытию водопропускных окон, вмонтированных на уровне днища в разделительные перегородки. Днище регулирующей емкости выполнено с уклоном в сторону приямка с таким расчетом, чтобы осадок транспортировался сточной жидкостью на очистные сооружения.

Из аккумулирующей емкости сточные воды подаются в колодец- гаситель напора, откуда по самотечному коллектору поступают в песколовку с восходяще-нисходящим движением сточных вод, предназначенную для улавливания круподисперсных взвесей и плавающих загрязнений. Всплывающие вещества скапливаются в верхней части зоны нисходящею потока и периодически удаляются ассенизационной машиной, а взвешенные частицы скапливаются в приямке, оборудованном стояком откачки осадка, для периодического его вывоза ассенизационной маши

Из песколовки сточные воды в самотечном режиме поступают в отстойник, предназначенный для улавливания мелкодисперсных взвесей и плавающих нефтепродуктов.

Далее стоки поступают в нефтеуловитель в котором происходит сбор плавающих веществ и нефтепродуктов.

Доочистка стоков производится на сорбционном фильтре, где они восходящим потоком фильтруются через расчетный слой сорбента и очищаются от эмульгированных нефтепродуктов и остаточной мелкодистерсной взвеси.

Сброс очищенных стоков предусмотрен в р. Горетовку. Осуществление сброса возможно только после согласования проекта органами природоохраны: Росприроднадзором, МОБВУ и др.

Задержанные на сооружениях осадки и отходы откачиваются специализированным автотранспортом и вывозятся на утилизацию.

Внутренний водосток. Проектом предусмотрены водосточные воронки с электроподогревом, система внутренних водостоков с закрытым выпуском в наружные сети.

Расчетный расход ливневых стоков с кровли: жилые дома IV.03, IV. 05 - 20,56 л/с; жилые дома IV. 06 - IV. $09-3,15$ л/с; ДОО - 11,37 л/с.

Внутренняя система водостока монтируется из напорных труб НПВХ.
Для удаления случайных вод в помещениях ИТП, насосной, венткамер предусмотрены дренажные приямки с погружными насосами. Стоки из приямка отводятся в автоматическом режиме самостоятельным выпуском в наружные сети ливневой канализации.

Сеть монтируется из стальных труб по ГОСТ 3262-75*.

Теплоснабжение

Наружное теплоснабжение. Теплоснабжение зданий жилого комплекса предусматривается от теплосетей РТС-4 и ГТУ ТЭЦ города Зеленограда, с присоединением к двухтрубной существующей теплосети диаметром 800 мм в камере ТК $41 / 4$ в, в соответствии с Условиями подключения б/д № 14-10/3-1 и Техническими условиями от 25.12 .2013 № 13-10/3554 Филиала № 10 «Зеленоградский» ОАО «МОЭК».

Присоединение отдельных зданий комплекса к существующим и проектируемым теплосетям, в соответствии с Заданием на проектирование, предусматривается на основании Договора между Заказчиком и эксплуатирующей организацией посредством разработки отдельной проектной документации.

Индивидуальныий тепловой пункт корпуса IV. 03 (ИТП IV.03)
Помещение ИТП располагается в отдельном помещении в подвале, на отметке $-7,35$, в координационных осях 3-4/Д-Е. ИТП имеет два выхода: один наружный выход и второй выход в коридор через лестничную клетку, также на улицу. Для ИТП предусматривается самостоятельная приточновытяжная рециркуляционная система вентиляции. Для отвода случайных и аварийных вод из помещения ИТП предусматривается устройство приямка с последующим автономным отводом воды насосами в проектируемый водосток. Предусматриваются звуко-виброизоляционные мероприятия: применение насосов с низкими шумовыми характеристиками; установка на трубопроводах виброгасящих гибких вставок. На вводе теплосети в ИТП устанавливается узел учета тепловой энергии. Узел оборудуется теплосчетчиком. Для компенсации температурного расширения, подпитки системы отопления/вентиляции и деаэрации, предусматривается установка поддержания давления с насосами и мембранными расширительными баками.

Параметры теплоносителя на вводе в ИТП составляют: температура $150 / 130-70^{\circ} \mathrm{C}$; давление $-5,5$ атм. (под.) / 3,0 атм. (обр.). Давление теплоносителя на вводе в ИТП принято с условием обеспечения нормального функционирования гидравлического режима первичного контура (в отсутствие данных в имеющихся ТУ эксплуатирующей организации). Окончательное определение гидрорежима на вводе в ИТП будет уточнено на последующем этапе проектирования без изменения параметров принятого теплового и теплотехнического оборудования по данному проекту.

Тепловые нагрузки на ИТП составляют (Гкал/час): отопительная 1,548 ; вентиляционная $-0,133$; системы горячего водоснабжения $-0,745$; Общая тепловая нагрузка на здание $-2,426$ Гкал/час (при разрешённой 2,736 Гкал/час).

Присоединение систем отопления и вентиляции предусматривается по независимой схеме с использованием разборных пластинчатых теплообменников, с температурными режимами $85-60^{\circ} \mathrm{C}, 95-60^{\circ} \mathrm{C}$ соответственно. Циркуляция воды в системе отопления осуществляется циркуляционными насосами с частотно-регулируемым приводом.

Для автоматического поддержания температуры воды в системе по отопительному графику, перед теплообменником предусматривается установка регулирующего клапана.

Система горячего водоснабжения принята смешанной двухступенчатой. В качестве водоподогревателей используются пластинчатые разборные теплообменники. Циркуляция воды в системе горячего водоснабжения осуществляется циркуляционными насосами с частотно-регулируемым приводом. Для автоматического поддержания температуры воды в системе ГВС предусматривается установка регулирующего клапана с электроприводом на входе 2 -ой ступени. Для горячего водоснабжения температура в подающем трубопроводе $-65^{\circ} \mathrm{C}$.

Индивидуальный тепловой пункт корпуса IV. 05 (ИТП IV.05)

Помещение ИТП располагается в отдельном помещении в подвале, в координационных осях $3-4 / Д-Е$, на отметке $-8,85$. ИТП имеет два выхода: один наружный выход и второй выход в коридор через лестничную клетку, также на улицу.

Для ИТП предусматривается самостоятельная приточно-вытяжная рециркуляционная система вентиляции. Для отвода случайных и аварийных вод из помещения ИТП предусматривается устройство приямка с последующим автономным отводом воды насосами в проектируемый водосток. Предусматриваются звуко-виброизоляционные мероприятия: применение насосов с низкими шумовыми характеристиками; установка на трубопроводах виброгасящих гибких вставок. На вводе теплосети в ИТП устанавливается узел учета тепловой энергии. Узел оборудуется теплосчетчиком. Для компенсации температурного расширения, подпитки системы отопления/вентиляции и деаэрации, предусматривается установка поддержания давления с насосами и мембранными расширительными баками.

Параметры теплоносителя на вводе в ИТП составляют: температура $150 / 130-70^{\circ} \mathrm{C}$; давление $-5,5$ атм. (под.) / 3,0 атм. (обр.). Давление теплоносителя на вводе в ИТП принято с условием обеспечения нормального функционирования гидравлического режима первичного контура (в отсутствие данных в имеющихся ТУ эксплуатирующей организации). Окончательное определение гидрорежима на вводе в ИТП будет уточнено на последующем этапе проектирования, без изменения параметров принятого теплового и теплотехнического оборудования по данному проекту.

Тепловые нагрузки на ИТІІ составляют (Гкал/час): отопительная 1,786 ; вентиляционная - 0,102 ; системы горячего водоснабжения - 0,623 ; Общая тепловая нагрузка на здание - 2,511 Гкал/час (при разрешённой 2,716 Гкал/час).

Присоединение систем отопления и вентиляции предусматривается по независимой схеме с использованием разборных пластинчатых теплообменников, с температурными режимами $85-60^{\circ} \mathrm{C}, 95-60^{\circ} \mathrm{C}$ соответственно. Циркуляция воды в системе отопления осуществляется циркуляционными насосами с частотно-регулируемым приводом.

Для автоматического поддержания температуры воды в системе по отопительному графику, перед теплообменником предусматривается установка регулирующего клапана.

Система горячего водоснабжения принята по смешанной двухступенчатой схеме. В качестве водоподогревателей используются пластинчатые разборные теплообменники. Циркуляция воды в системе горячего водоснабжения осуществляется циркуляционными насосами с частотнорегулируемым приводом. Для автоматического поддержания температуры воды в системе ГВС предусматривается установка регулирующего клапана с электроприводом на входе 2 -ой ступени. Для горячего водоснабжения температура в подающем трубопроводе $-65^{\circ} \mathrm{C}$.

Индивидуальные тепловые пунктьт корпусов IV. 06 - IV. 09 (ИТП IV. 06 -IV.09)

Помещения ИТП располагаются в отдельных помещениях подвала, в координационных осях $6-8 / \mathrm{A}-\mathrm{B} / 1$ (для корпусов IV. 06 и IV.08), 1-3/A-B/1 (для корпусов IV. 07 и IV.09) на отметках $-3,30,-4,05,-3,30,-3,90$ соответственно для корпусов IV.06, IV.07, IV.08, IV.09. ИТП имеют наружные выходы. Для ИТП предусматриваются самостоятельные приточно-вытяжные рециркуляционные системы вентиляции. Для отвода случайных и аварийных вод из помещений ИТП предусматривается устройство приямка с последующим автономным отводом воды насосами в проектируемый водосток. Предусматриваются звуко-виброизоляционные мероприятия: применение насосов с низкими шумовыми характеристиками; установка на трубопроводах виброгасящих гибких вставок. На вводе теплосети в ИТП устанавливается узел учета тепловой энергии. Узел оборудуется теплосчетчиком. Для компенсации температурного расширения, подпитки си-

стемы отопления и деаэрации, предусматривается установка поддержания давления с насосами и мембранными расширительными баками.

Параметры теплоносителя на вводах в ИТП составляют: температура $-150 / 130-70^{\circ} \mathrm{C}$; давление -5.5 атм. (под.) / 3.0 атм. (обр.). Давление теплоносителя на вводах в ИТП принято с условием обеспечения нормального функционирования гидравлического режима первичного контура (в отсутствие данных в имеющихся ТУ эксплуатирующей организации). Окончательное определение гидрорежима на вводах в ИТП будет уточнено на последующем этапе проектирования, без изменения параметров принятого теплового и теплотехнического оборудования по данному проекту.

Тепловые нагрузки на ИТП составляют (Гкал/час):

- корпус IV.06: отопительная $-0,366$; вентиляционная $-0,015$; системы горячего водоснабжения - 0,167 . Общая тепловая нагрузка на здание 0,549 Гкал/час (при разрешённой - 0,622 Гкал/час);
- корпус IV.07: отопительная $-0,380$; системы горячего водоснабжения $-0,175$. Общая тепловая нагрузка на здание $-0,555$ Гкал/час (при разрешённой - 0,55 Гкал/час);
- корпус IV.08: отопительная - 0,367 ; системы горячего водоснабжения $-0,170$. Общая тепловая нагрузка на здание - 0,537 Гкал/час (при разрешённой - 0,565 Гкал/час);
- корпус IV.09: отопительная - 0,380 ; системы горячего водоснабжения $-0,175$. Общая тепловая нагрузка на здание - 0,555 Гкал/час (при разрешённой - 0,55 Гкал/час).

Присоединение систем отопления и вентиляции (только для корпуса IV.06, с присоединением вентиляционной нагрузки через теплообменник отопления) предусматривается по независимой схеме с использованием разборных пластинчатых теплообменников, с температурным режимом 85$60^{\circ} \mathrm{C}$. Циркуляция воды в системе отопления осуществляется циркуляционными насосами с частотно-регулируемым приводом.

Для автоматического поддержания температуры воды в системе по отопительному графику, перед теплообменником предусматривается установка регулирующего клапана.

Система горячего водоснабжения принята смешанной двухступенчатой схеме. В качестве водоподогревателей используются пластинчатые разборные теплообменники. Циркуляция воды в системе горячего водоснабжения осуществляется циркуляционными насосами с частотнорегулируемым приводом. Для автоматического поддержания температуры воды в системе ГВС предусматривается установка регулирующего клапана с электроприводом на входе 2 -ой ступени. Для горячего водоснабжения температура в подающем трубопроводе $-65^{\circ} \mathrm{C}$.

Индивидуальный тепловой пункт детсада IV. 10 (ИТП IV.10)
Помещение ИТП располагается в отдельном помещении в подвале, в координационных осях А-Г/11-14, на отметке $-3,75$. ИТП имеет наружный

выход из здания. Над помещением теплового пункта размещается медицинский пункт с кратковременным пребыванием.

Категория потребителя теплоты по надежности теплоснабжения первая.

Для ИТП предусматривается самостоятельная приточно-вытяжная рециркуляционная система вентиляции. Для отвода случайных и аварийных вод из помещения ИТП предусматривается устройство приямка с последующим автономным отводом воды насосами в проектируемый водосток. Предусматриваются звуко-виброизоляционные мероприятия: применение насосов с низкими шумовыми характеристиками; установка на трубопроводах виброгасящих гибких вставок. На вводе теплосети в ИТП устанавливается узел учета тепловой энергии. Узел оборудуется теплосчетчиком. Для компенсации температурного расширения, подпитки системы отопления/вентиляции и деаэрации, предусматривается установка поддержания давления с насосами и мембранными расширительными баками.

Параметры теплоносителя на вводе в ИТП составляют: температура $150 / 130-70^{\circ} \mathrm{C}$; давление $-5,5$ атм. (под.) / 3,0 атм. (обр.).

Тепловые нагрузки на ИТП составляют (Гкал/час): отопительная 0,168 ; вентиляционная - 0,288 ; системы горячего водоснабжения - 0,170 ; система обогрева «теплый пол» - 0,032. Общая тепловая нагрузка на здание $-0,658$ Гкал/час (при разрешённой - 0,761 Гкал/час).

Присоединение систем отопления и вентиляции предусматривается по независимой схеме с использованием разборных пластинчатых теплообменников, с температурными режимами $80-55^{\circ} \mathrm{C}, 95-60^{\circ} \mathrm{C}$ соответственно. Циркуляция воды в системе отопления осуществляется циркуляционными насосами с частотно-регулируемым приводом.

Для автоматического поддержания температуры воды в системе по отопительному графику, перед теплообменником предусматривается установка регулирующего клапана.

Система горячего водоснабжения принята с присоединением по смешанной двухступенчатой схеме. В качестве водоподогревателей используются пластинчатые разборные теплообменники. Циркуляция воды в системе горячего водоснабжения осуществляется циркуляционными насосами с частотно-регулируемым приводом. Для автоматического поддержания температуры воды в системе ГВС предусматривается установка регулирующего клапана с электроприводом на входе 2-ой ступени. Для горячего водоснабжения температура в подающем трубопроводе $-65^{\circ} \mathrm{C}$.

Присоединение системы обогрева «теплый пол» предусматривается по независимой схеме, с использованием разборных пластинчатых теплообменников, с температурным режимом $45-35^{\circ} \mathrm{C}$ (при первичном теплоносителе с расчетной температурой $70-40^{\circ} \mathrm{C}$).

Резервное теплоснабжение предусматривается установкой двух электрокотлов.

Внутреннее теплоснабжение

Отопление и Теплоснабжение систем вентилячии
Проектом предусмотрено разделение системы отопления на отдельные ветви в соответствии с функциональным назначением помещений здания:

Жилая часть зданий: общественные зоны жилой части (лестничные клетки, вестибюли, лифтовые холлы); встроенные помещения 1 -го этажа; технические помещения подвала и кладовые.

Система отопления запроектирована двухтрубная с нижней разводкой магистральных трубопроводов, которые прокладываются под потолком подземного этажа.

Система отопления предусмотрена как с тупиковым, так и с попутным движением теплоносителя.

Вертикальные стояки жилой части проложены в эксплуатируемых шахтах, на поэтажных ответвлениях жилой части выполнено устройство распределительных шкафов с гребенками, оснащенными поквартирными приборами учета тепла, а также необходимой запорно-регулирующей и сливной арматурой.

Ввод трубопроводов системы отопления для арендных зон предусмотрен в технические помещения для размещения вентоборудования или производственные помещения с установкой приборов учета тепла.

На радиаторах предусмотрена установка термостатических клапанов для регулирования теплоотдачи каждого прибора и необходимой запорнорегулирующей арматуры, позволяющей производить отключение каждого прибора в отдельности. В общественных зонах здания радиаторы должны оснащаться терморегуляторами, защищенными от неавторизованного доступа.

В качестве отопительных приборов для различных типов помещений приняты:

- для жилых помещений - радиаторы или конвекторы;
- для технических помещений, кладовых - отопительные приборы с гладкой поверхностью без оребрения;
- для помещений машинного отделения лифтов - электрические конвекторы;
- для электрощитовых, помещений СС - электрические конвекторы;
- для офисных и административных помещений - конвекторы или радиаторы.

Установка отопительных приборов предусматривается на каждом этаже лестничной клетки, на высоте 2,2 м от поверхности проступей и площадок лестниц и лифтового холла.

Для входных групп арендных зон предусмотрено подключение электрических воздушно-тепловых завес. Электрические завесы устанавливаются силами арендаторов.

На ответвлениях и стояках системы отопления предусмотрена запор-но-регулирующая и балансировочная арматура.

Магистральные и стояковые стальные трубопроводы систем отопления окрашиваются в два раза грунтовкой перед монтажом и после сварочных работ до установки теплоизоляционных материалов, после проведения гидравлических испытаний и опрессовки систем, трубопроводы теплоизолируются материалами на основе вспененного каучука или иными сертифицированными материалами (группа горючести не ниже Г1). Трубопроводы, прокладываемые открыто в помещениях общественных зон, покрываются кожухами из полимерных материалов. Запорная арматура также подлежит теплоизоляции. Магистральные трубопроводы должны быть смонтированы с уклоном не менее 0,002 по направлению к техническим помещениям либо к точкам врезке ответвлений. Во всех низких точках трубопроводов предусматривается установка спускных кранов для возможности опорожнения системы. Во всех высших точках необходима установка воздухосборников с воздухоотводчиками для возможности спуска воздуха.

Отопление кладовьтх и технических помещений. Схема системы отопления проектируется двухтрубной. В качестве отопительных приборов для технических помещений и кладовых применяются местные отопительные приборы с гладкой поверхностью без оребрения.

Температура воздуха, поддерживаемая в кладовых, $+16^{\circ} \mathrm{C}$.
Температура воздуха поддерживаемая в технических помещениях $+18^{\circ} \mathrm{C}$.

Разводка магистральных трубопроводов осуществляется под потолком подвала.

До диаметра 50 мм - применяются трубы водогазопроводные обыкновенные, соответствующие ГОСТ 3262-75*, трубопроводы диаметром более 50 мм - стальные, соответствующие ГОСТ 10704-91*.

Регулирование системы отопления выполняется при помощи балансировочной и регулирующей арматуры.

Трубопроводы прокладываются в теплоизоляции, открыто под потолком. На протяженных ветвях предусматривается устройство комгенсаторов температурного расширения. При пересечении трубопроводами строительных конструкций устанавливаются гильзы с последующей заделкой зазоров негорючими материалами. При пересечении деформационных швов на трубопроводах системы отопления предусмотрены компенсаторы.

Bce трубопроводы прокладываются с уклоном 0,002 мм в сторону ИТП. В верхних точках системы предусматриваются воздухоотводчики, в нижних точках предусматриваются спускные краны.

Отопление встроенных помешений 1 этажа. Система отопления встроенных помещений запроектирована как с попутным, так и тупиковым движением теплоносителя.

Разводка магистральных трубопроводов предусмотрена под потолком подвала зданий. На ответвлении к каждому арендатору встроенных помещений от магистральных трубопроводов системы отопления надземной части зданий проектом предусматривается установка индивидуальных

приборов учета тепла. Приборы учета тепла размещаются в технических помещениях арендаторов или в специальных шкафах.

Магистральные трубопроводы прокладываются в теплоизоляции открыто, скрыто в коммуникационных шахтах и под потолком.

Разводка системы отопления от распределительных гребенок арендаторов предусматривается скрыто в стяжке пола с применением труб из сшитого полиэтилена PEXa. Трубопроводы из сшитого полиэтилена прокладываются скрыто в стяжке пола в теплоизоляции и защитной гофротрубе.

Отопление помешений общественных зон. Система отопления помещений общественных зон запроектирована стояковой двухтрубной. Разводка магистральных трубопроводов предусмотрена под потолком подвала зданий.

Температура воздуха, поддерживаемая в лестничных клетках, принята $+16^{\circ} \mathrm{C}$.

Установка отопительных приборов предусматривается на каждом этаже лестничной клетки и лифтового холла. Для лестничных клеток и лифтовых холлов для лучшей гидравлической устойчивости предусматриваются отдельные стояки отопления.

Установка отопительных приборов, выступающих от плоскости стен, предусмотрена на высоте не менее 2,2 м от поверхности проступей и площадок лестниц.

До диаметра 50 мм - применяются трубы водогазопроводные обыкновенные, соответствующие ГОСТ 3262-75*, трубопроводы диаметром более 50 мм - стальные, соответствующие ГОСТ 8732-78.

На протяженных ветвях предусматривается устройство компенсаторов температурного расширения. При пересечении трубопроводами строительных конструкций устанавливаются гильзы с последующей заделкой зазоров негорючими материалами. При пересечении деформационных швов на трубопроводах системы отопления предусмотрены компенсаторы. В качестве отопительных приборов для общественных зон зданий применены радиаторы или конвекторы.

Отопление жильх помещений. Система отопления жилых помещений запроектирована стояковой двухтрубной. Для жилой части зданий комплекса вертикальные стояки от магистральных трубопроводов прокладываются в эксплуатируемых коммуникационных шахтах до потребителей на этажах жилой части. На ответвлениях от стояков на жилых этажах, в коммуникационных шкафах, проектом предусматривается установка распределительных гребенок с запорной, регулирующей и сливной арматурой, а также установка индивидуальных приборов учета тепла на каждую квартиру. От гребенок разводка системы отопления проектируется с попутным движением теплоносителя.

Трубопроводы прокладываются в теплоизоляции, открыто под потолком подземного этажа и скрыто в коммуникационных шахтах, либо за подвесным потолком надземных этажей. На протяженных ветвях предусмат-

ривается устройство компенсаторов температурного расширения, на стояках отопления предусмотрены сильфонные компенсаторы. При пересечении трубопроводами строительных конструкций устанавливаются гильзы с последующей заделкой зазоров негорючими материалами. При пересечении деформационных швов на трубопроводах системы отопления предусмотрены компенсаторы.

Магистральные трубопроводы системы отопления предусмотрены из труб стальных по ГОСТ 8732-78 для труб диаметром более 50 мм, трубопроводы меньшего диаметра - из стальных водогазопроводных труб ГОСТ 3262-75*. Горизонтальные поэтажные разводки из труб из сшитого полиэтилена с антидиффузионным покрытием. Горизонтальные разводки трубопроводов осуществляются в стяжке пола. Трубы из сшитого полиэтилена прокладываются в теплоизоляции и защитной гофротрубе. В качестве отопительных приборов в жилой части здания применены радиаторы или конвекторы.

На отопительных приборах предусматривается установка термостатических вентилей.

В верхних точках системы предусматриваются воздухоотводчики, в нижних точках предусматриваются спускные краны.

Отопление технологических помещений со спечиальными требованиями (электрощитовые, помещения СС и др.). Для помещений, в которых не допускается применение водяного отопления, к установке принимаются электрические отопительные приборы с IP в соответствии с техническими требованиями к помещению.

ДОО. В здании предусматриваются отдельные системы отопления для следующих групп помещений:

- надземная часть здания (в т. ч. групповые ячейки, административные помещения, медицинский блок, залы для занятий);
- пищеблок;
- технические помещения и лестничные клетки;
- напольное отопление групповых ячеек.

Системы отопления здания предусмотрены двухтрубные, с тупиковым движением теплоносителя. Горизонтальные магистральные трубопроводы прокладываются под потолком подвальных помещений здания.

Для балансировки систем отопления предусмотрена установка ручных балансировочных клапанов (на стояках) и автоматических балансировочных клапанов перед поэтажными распределительными коллекторами. Спуск воды из системы отопления предусмотрен в дренажный приямок в ИТП. Выпуск воздуха из системы осуществляется через автоматические воздухоотводчики со встроенным затвором в верхних точках системы и воздухоотводчики на приборах отопления.

Для системы отопления надземной части здания предусмотрены горизонтальные магистрали и вертикальные стояки из стальных труб, а также горизонтальные поэтажные разводки из труб из сшитого полиэтилена с антидиффузионным покрытием.

Горизонтальные разводки трубопроводов осуществляются в стяжке пола. Трубы из сшитого полиэтилена прокладываются в теплоизоляции и защитной гофротрубе.

В качестве отопительных приборов применены биметаллические радиаторы «Сантехпром-БМ», либо аналоги. Во избежание ожогов и травм у детей отопительные приборы закрыты съемными декоративными экранами из массива дерева.

Регулирование производительности отопительного прибора осуществляется с помощью термостатической головки с выносным датчиком температуры, индивидуально для каждого помещения. В нерабочее время предусмотрено централизованное снижение температуры в отапливаемых помещениях, за счет автоматики, установленной в ИТП.

Для отопления технических помещений в подвале здания - горизонтальная 2 -х трубная система отопления. Трубопроводы из стальных труб прокладываются под потолком отапливаемых помещений. В качестве отопительных приборов применяются стальные конвекторы «Сантехпром», или аналоги. Регулирование теплоотдачи приборов отопления осуществляется автоматическими клапанами с термостатическими элементами.

Отопление лестничных клеток здания, имеющих наружные ограждающие конструкции, осуществляется отдельными стояками. В качестве отопительных приборов применяются стальные конвекторы «Сантехпром» или аналоги, располагающиеся на высоте 2,2 м от уровня пола лестничных площадок. Подключение приборов отопления осуществляется с помощью запорно-регулирующих клапанов без термостатических элементов, типа RLV (Danfoss) либо аналоги. Трубопроводы, проходящие в лестничных клетках, теплоизолируются материалом на основе вспененного полиэтилена.

Отопление электрощитовой и помещения СС осуществляется электрическими конвекторами с автоматическим поддержанием температуры в помещениях.

Для отопления помещений пищеблока предусмотрены горизонтальные магистрали и вертикальные стояки из стальных труб, а также горизонтальные поэтажные разводки из труб из сшитого полиэтилена с антидиффузионным покрытием. В качестве отопительных приборов применяются стальные панельные радиаторы с гладкой поверхностью в гигиеническом исполнении. Регулирование теплоотдачи приборов отопления осуществляется автоматическими клапанами с термостатическими элементами.

Магистральные трубопроводы систем отопления выполнены из водогазопроводных труб по ГОСТ 3262-75* (для труб диаметром менее 50 мм) и стальных электросварных труб по ГОСТ 10704-91 (для труб диаметром более 50 мм). Трубопроводы системы отопления теплоизолируются материалом на основе вспененного полиэтилена.

В верхних точках системы предусмотрена установка автоматических воздухоотводчиков, в нижних - шаровых кранов для спууска воды.

Для поддержания температуры пола не менее $23^{\circ} \mathrm{C}$ в помещениях игровых, расположенных на 1 этаже, проектом предусмотрена система напольного отопления.

Теплоносителем с системе «теплый пол» является вода с параметрами $40 / 30^{\circ} \mathrm{C}$. Для приготовления теплоносителя в ИТП предусмотрен отдельный теплообменник.

Нагревательным элементом в системе напольного отопления является трубы из сшитого полиэтилена с антидиффузионной защитой, уложенные в цементно-песчаную стяжку.

Узлы регулирования напольного отопления включают в себя необходимую запорно-регулирующую арматуру и циркуляционный насос. Узлы регулирования располагаются в подсобных помещениях. Во избежание доступа детей к оборудованию, узлы регулирования размещаются во встроенных, либо приставных, шкафах с дверцей и замком.

Удаление воздуха из системы напольного отопления осуществляется через воздуховыпускные вентили на коллекторах узлов регулирования.

Трубопроводы в местах пересечения перекрытий, внутренних стен и перегородок прокладываются в гильзах из негорючих материалов с заделкой отверстий и зазоров негорючим материалом, обеспечивающим предел огнестойкости ограждения.

Компенсация тепловых удлинений трубопроводов осуществляется за счет углов поворота трассы.

Теплоснабжение систем вентиляции. Система теплоснабжения калориферов приточных вентустановок принята двухтрубная. У приточной установки осуществляется индивидуальное качественное регулирование теплоносителя клапанами с электроприводами, обеспечивающими заданную температуру воздуха после калорифера. Система оснащена необходимым количеством запорной и регулирующей арматуры и имеет циркуляционные насосы. Приточные установки имеют защиту от замораживания. В качестве регулирующего вентиля предусматривается применение автоматического комбинированного балансировочного клапана с приводом. Допускается также использование двухходовых или трехходовых регулирующих клапанов.

Для арендных зон проектом предусматривается прокладка трубопроводов теплоснабжения с вводом в венткамеру для размещения вентоборудования. На вводе предусмотрена установка отключающей арматуры, обеспечивающей возможность отключения ответвлений независимых контуров, спуска воды и приборов учета тепла (приборы учета устанавливаются арендаторами самостоятельно). Вся дальнейшая разводка по встроенным помещениям 1-го этажа арендных зон выполняется арендаторами. Все вентиляционное оборудование встроенных помещений, включая узлы обвязки, устанавливается также арендаторами. Разводка магистральных трубопроводов системы теплоснабжения арендных зон осуществляется под

потолком подвала, для каждого арендатора предусматривается ответвление от основной магистрали.

Для системы теплоснабжения вентиляционных установок приняты трубопроводы: из стальных водогазопроводных труб диаметром до 50 мм включительно - по ГОСТ $3262-75^{*}$ и из стальных электросварных труб диаметром более 50 мм - по ГОСТ 8732-78.

На протяженных ветвях предусматривается устройство компенсаторов темтературного расширения. При пересечении трубопроводами строительных конструкций устанавливаются гильзы с последующей заделкой зазоров негорючими материалами. При пересечении деформационных щвов на трубопроводах системы теплоснабжения предусмотрены компенсаторы.

Трубопроводы системы теплоснабжения приточных установок окрашиваются в два раза грунтовкой перед монтажом и после сварочных работ до установки теплоизоляционных материалов. Трубопроводы теплоизолируются теплоизоляционными материалами на основе вспененного каучука или иными сертифицированными материалами. Запорная арматура также полежит теплоизоляции. Магистральные трубопроводы должны быть смонтированы с уклоном не менее 0,002 по направлению к помещению теплового ввода либо к точкам врезки ответвлений. Во всех низких точках систем предусматривается установка спускных кранов для возможности опорожнения системы. Во всех высших точках систем необходима установка воздухосборников, либо сепараторов для возможности спуска воздуха.

Вентилячия. Проект вентиляции комплекса выполнен с учетом функционального назначения помещений, режимов работы, характера и величины тепло-влаговыделений, технологического задания.

Запроектированные системы вентиляции воздуха обеспечивают расход наружного воздуха в объеме санитарных норм с параметрами воздуха, соответствующим внутренним расчетным параметрам воздуха по назначению помещений. Управление локальными вытяжными системами осуществляется как с центрального диспетчерского пункта, так и от щитов, расположенных в обслуживаемых помещениях венткамер.

Все приточные установки оборудованы узлами регулирования. Калориферы первого подогрева проектируются с узлами регулирования с установкой циркуляционного насоса, обеспечивающего защиту от замерзания. В качестве регулирующего вентиля предусмотрено применение автоматического комбинированного балансировочного клапана с приводом, также допускается использование $2-\mathrm{x}$ ходового или $3-\mathrm{x}$ ходового регулирующих клапанов.

Все вентиляционные установки по возможности оборудованы частотными регуляторами.

Расстояние между воздухозаборами вентиляционных систем разных пожарных отсеков предусматривается не менее 3 метров.

Расстояние между проемами для выброса воздуха вентиляционных систем разных пожарных отсеков предусматривается не менее 3 метров.

Выброс воздуха из систем вентиляции предусмотрен на расстоянии не менее 2 м до приемного устройства наружного воздуха, расположенного на той же стене.

Толщина стали для воздуховодов приточно-вытяжных систем принята в соответствии с приложением Л СП 60.13330.2012. Воздуховоды приточных и вытяжных систем при необходимости теплоизолируются материалами толщиной, достаточной для предотвращения образования конденсата. Тип теплоизоляционного материала зависит от требований к огнестойкости воздуховодов, для воздуховодов без предела огнестойкости допускается применение материалов с классом горючести в соответствии с требованиями норм (СП 1.13130.2009 и пр.).

Для воздуховодов с установленным пределом огнестойкости применяются материалы класса НГ, имеющие толщину, которая соответствует требуемому пределу огнестойкости и толщину, достаточную для предотвращения возникновения конденсата. В любом случае, диктующей принята толщина материала, обусловленная пределом огнестойкости.

Воздуховоды с нормируемым пределом огнестойкости (в том числе теплозащитные и огнезащитные покрытия в составе их конструкций) предусмотрены из негорючих материалов. При этом толщина листовой стали для воздуховодов принята не менее 0,8 мм (но не менее чем указанная в прил. Л СП 60.13330 .2012). Для уплотнения разъемных соединений таких конструкций (в том числе фланцевых) использованы негорючие материалы.

Вентиляция проектируется:
для помещений кладовых и технических помещений - приточновытяжная вентиляция с естественным и механическим побуждением;

для встроенных помещений 1 этажа - механическая приточновытяжная вентиляция;

для жилых помещений - естественная вентиляция (неорганизованный приток, вытяжка - естественная).

Теплоснабжение вентиляционных установок осуществляется от ИТП соответствующего здания.

Воздуховоды общеобменных систем теплоизолированы материалами пенофол или фольгированной минватой.

Вентилячия кладовыхх и технических помещений. Для кладовых и технических помещений проектируются системы приточно-вытяжной вентиляции. В пределах одного пожарного отсека системы вентиляции проектируются отдельными для помещений кладовых и технических помещений одного функционального назначения и одной категории по взрывопожароопасности.

Для помещений кладовых предусмотрена вытяжная вентиляция. Расчет воздухообмена кладовых произведен из расчета 1 -кратного воздухообмена в час. Приток - неорганизованный естественный. Вытяжная система

для помещений кладовых предусматривается с механическим побуждением. Выброс осуществляется выше уровня кровли наиболее высокой секции жилого дома, размещение вытяжного вентилятора предусмотрено на кровле.

B помешениях ИТП и насосных каждого здания предусмотрена при-точно-вытяжная вентиляция с механическим побуждением, с возможностью рециркуляции воздуха. Воздухозабор для помещения ИТП предусмотрен на высоте не менее двух метров от уровня земли, выброс воздуха осуществляется с кровли.

Для помещений СС, электрощитовььх и аппаратнььх предусмотрена приточная и вытяжная механическая вентиляция, для нагрева воздуха до необходимой температуры предусматривается установка электрического канального воздухонагревателя. Вентиляторы устанавливаются под потолком, выброс воздуха предусмотрен на фасад зданий. Для помещений аппаратной и СС предусмотрен 100% резерв вентиляторов, как для помещений с круглосуточным и круглогодичным поддержанием параметров микроклимата.
B помещениях машинных отделений лифтов для снятия теплоизбытков предусмотрен естественный приток, вытяжная вентиляция - с механическим побуждением. Системы вентиляции включаются по датчику температуры в случае, если температура внутреннего воздуха становится выше нормы. Вытяжные вентиляторы расположены на кровле зданий.

Вентилячия встроенньх помещений 1 этажа. Для каждого арендатора предусматриваются индивидуальные системы вентиляции с механическим побуждением. Системы вентиляции проектируются, закупаются и монтируются каждым арендатором индивидуально. Арендаторы могут устанавливать системы как прямоточные, так и с рекуперацией тепла удаляемого воздуха.

Воздухообмен рассчитывается по санитарной норме наружного воздуха.

Все установки проектируются с водяными или электрическими воздухоподогревателями. Увлажнение и охлаждение приточного воздуха не предусматривается.

Для арендных зон площадью до $40 \mathrm{~m}^{2}$ предусмотрены приточные установки подвесного типа с электрическим воздухонагревателем, устанавливаемые в пространстве подшивного потолка обслуживаемой арендной площади, для помещений площадью более $40 \mathrm{~m}^{2}$ предусмотрены помещения венткамер.

Воздухозаборные решетки для вентиляции встроенных помещений расположены на 1-х этажах зданий. Вентвыбросы встроенных помещений предусмотрены выше уровня зданий. Выбросы вытяжных систем из производственных помещений кафе, а также от систем местных отсосов предусмотрены на кровле самой высокой части здания. Выброс воздуха электрощитовых и СС осуществляется на фасад здания.

В пределах одного арендатора самостоятельные системы вентиляции предусматриваются с учетом категорий помещений по взрывопожароопасности.

Отдельные вытяжные системы вентиляции предусматриваются из санузлов для каждого арендатора с установкой канального вытяжного вентилятора.

Для помещений раздевалок фитнеса предусмотрен индивидуальный воздухоподогреватель.

Воздухообмен встроенных помещений рассчитывается исходя из технологического и архитектурного задания, а также согласно действующим нормам.

Температура приточного воздуха в холодный период принимается согласно технологическому заданию или согласно действующим нормам.

Для отвода дренажа предусмотрены приямки в помещениях венткамер арендаторов.

Вентиляция жильт помещений. Вентиляция жилых помещений предусмотрена приточно-вытяжная с естественным побуждением. Вытяжная вентиляция из кухонь и санузлов жилой части здания естественная. Присоединение поэтажных вытяжных систем предусмотрено через воздушные затворы (спутники). Длина вертикального участка части воздушного затвора принята не менее 2 -х метров.

Для систем вентиляции из санузлов и кухонь предусмотрены индивидуальные вытяжные системы. В целях повышения эффективности работы вентиляции на последнем этаже зданий предусмотрены самостоятельные вытяжные каналы с возможностью установки малошумных бытовых канальных вентиляторов. Установка этих вентиляторов осуществляется хозяином квартиры за счет электрических мощностей, отпущенных на квартиру.

Проектом предусматриваются шахты вытяжной естественной вентиляции из гидрофобизированных гипсовых пазогребневых плит, полнотелых. Вытяжные шахты жилой части выведены непосредственно на кровлю на 0,5 м выше парапета в зависимости от места установки. Над вытяжными шахтами предусматривается установка зонтов в строительном исполнении.

Приточная вентиляция в жилые помещения (спальни, гостиные, общие комнаты, кухни-гостиные) - неорганизованная естественная, за счет проветривания через окна, оборудованные приточными клапанами. В кухнях установка регулируемых клапанов не предусматривается.

Объем приточного воздуха принят не менее чем объем воздуха, удаляемый из помещений кухонь и санузлов, а также не менее расчетного воздухообмена жилых помещений.

Для общественных зон первых этажей зданий, включающих в себя помещения вестибюлей, консьержа и колясочной, проектом предусматриваются системы приточно-вытяжной вентиляции. Приточная вентиляция в общественные зоны - естественная, за счет проветривания через окна. Вытяжная вентиляция предусмотрена с механическим побуждением. Выброс

воздуха осуществляется на кровлю здания. Вытяжные вентиляторы размещаются на кровле. Системы вентиляции общественных зон запроектированы самостоятельными для каждой секции зданий.

ДОО. Для обеспечения санитарных требований к воздушной среде, проектом предусматривается устройство систем приточно-вытяжной вентиляции воздуха с механическим побуждением.

Кондиционирование в здании ДОО не предусматривается.
Забор свежего воздуха предусмотрен на уровне выше 2 м от земли.
Расчет воздухообменов произведен для пищеблока. В остальныхх помещениях воздухообмен принят по кратностям согласно СанПиН 2.4.1.3049-13 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы дошкольных образовательных организаций».

Для помещений групповых ячеек предусмотрена приточно-вытяжная вентиляция с механическим побуждением тяги. Удаление воздуха осуществляется из помещений игровых, спален, буфетных, раздевален (из верхней зоны и сушильных шкафов (по $10 \mathrm{~m}^{3} / ч$ на 1 шкаф) и туалетных. Приток - в помещения игровых, спален и раздевален, по балансу для данных помещений. Подача воздуха, для компенсации удаляемого из туалетных и буфетных, осуществляется в общие коридоры и рекреации. Подвижность воздуха в «рабочей» зоне групповых помещений не более $0,1 \mathrm{~m} / \mathrm{c}$. Вытяжные системы туалетных и раздевален запроектированы отдельными от систем, обслуживающих игровые и спальни.

Для административных помещений предусмотрена приточновытяжная вентиляция с механическим побуждением тяги. Количество приточного воздуха определено по санитарной норме и нормативным кратностям воздухообмена. Для санузлов административной части здания предусмотрены самостоятельные механические вытяжные системы. Количество удаляемого воздуха определено из расчета $50 \mathrm{~m}^{3} / \mathrm{ч}$ на 1 унитаз, $75 \mathrm{~m}^{3} / \mathrm{ч}$ на 1 душевую сетку. Подача воздуха, для компенсации удаляемого из санузлов, осуществляется в общие коридоры и рекреации. В помещениях предусматриваются самостоятельные приточная и вытяжная системы. Воздухообмен по помещениям принят по нормативным кратностям. Распределение воздушных потоков в помещениях рассчитывается исходя из перетекания воздуха из «чистой» зоны в «грязную». Удаление воздуха системой вытяжной вентиляции осуществляется из «грязной» зоны. Для удаления тепла и влаги в гладильной предусмотрена установка вытяжного зонта над гладильным прессом.

Для помещений пищеблока предусмотрены самостоятельные приточная и вытяжные системы. Вытяжка от местных локализующих устройств горячего цеха и моечной осуществляется отдельными системами. Воздухообмен определен: в горячем цехе - на ассимиляцию избытков теплоты, в остальных помещениях - по нормативным кратностям. Вытяжные воздуховоды от местных локализующих устройств горячего цеха имеют уклон в сторону коммуникационной шахты. В нижней точке воздуховода преду-

смотрен патрубок с краном для слива жировых отложений. Скорость воздуха в воздуховодах принята из расчета соблюдения акустических требований к помещениям, но не менее $4,5 \mathrm{~m} / \mathrm{c}$. Установленная мощность оборудования, коэффициенты загрузки и одновременности, а так же производительности местных локализующих устройств приняты в соответствии с предварительным технологическим заданием.

В помещениях предусматривается приточно-вытяжная вентиляция с механическим побуждением. Воздухообмен в помещениях принят с соответствии с приложением 3 СанПиН 2.4.1.3049-13. Подвижность воздуха в основных помещениях не более $0,1 \mathrm{~m} / \mathrm{c}$. Вытяжка из санузлов медицинского блока 50 м $3 / ч$ на 1 прибор.

Для технических помещений предусматривается приточно-вытяжная вентиляция с механическим побуждением. Воздухообмен в помещениях определен исходя из нормативных кратностей.

Для помещения ИТП предусматривается приточная установка без воздухонагревателя, с рециркуляцией воздуха от 0 до 100%.

Помещение электрощитовой обслуживается самостоятельной вытяжной системой.

Основные приточные установки и сопутствующее оборудование размещаются в венткамере, расположенной в подвальном этаже здания. Воздухозабор осуществляется с фасада здания в уровне 1 -го этажа. Низ воздухозаборных решеток размещается на высоте 2 м от уровня земли. Вытяжные вентиляторы в малошумном исполнении размещаются на кровле здания. Приточная и вытяжная установки ИТП размещаются в обслуживаемом помещении. Воздухозабор осуществляется с фасада здания в уровне 1го этажа. Низ воздухозаборных решеток размещается на высоте 2 м от уровня земли. Выброс воздуха осуществляется выше уровня кровли здания.

Кондиұионирование и холодоснабжение. Согласно Техническому Заданию для зданий комплекса централизованные системы холодоснабжения не предусматриваются.

Для жилых и встроенных помещений предусмотрена возможность установки сплит и мульти-сплит систем.

Для технологических помещений с необходимостью круглосуточного и круглодичного охлаждения (помещения СС, аппаратные и т.п.), проектом предусматривается установка полупромышленных сплит-систем с зимним комплектом со 100% резервированием.

Холодильное оборудование размещается таким образом, что уровень вибрационных и акустических щумов не превышает нормативные значения.

Отвод конденсата от внутренних блоков сплит-систем осуществляется в систему канализации, при этом подключение предусматривается с разрывом струи.

Проектом ЭОМ предусматривается электрическая мощность, необходимая для установки жильцами сплит-систем. Места установки наружных блоков сплит-систем определяются архитектурной частью проекта. Тип сплит-системы (или мультисплит системы) определяется на стадии рабочего проектирования или самими жильцами.

Для арендуемых помещений предусматривается установка сплит и мульти-сплит систем. Места установки наружных блоков сплит-систем определяются архитектурной частью проекта. Холодильная мощность, необходимая на охлаждение приточного воздуха, заложена в мощность сплит-системы.

Для снятия теплоизбытков в технологических помещениях, таких как: помещения СС, аппаратная, предусматривается установка сплит-систем.

Теплоизбытки приняты согласно технологическому заданию.
Для вентиляции предтриятий питания предлагается следующая схема: кондиционирование зала для посетителей осуществляется мультизональной сплит-системой.

Противодымная вентиляуия. В соответствии с проектными объемнопланировочными решениями для проектируемого объекта предусматриваются механические, автоматические и дистанционно-управляемые системы.

Системы дымоудаления (вытяжной противодымной защитной вентиляции) предусматриваются:

- из межквартирных коридоров надземной жилой части и вестибюлей входных групп;
- из помещений кладовых жильцов площадью более $200 \mathrm{~m}^{2}$.

Системы компенсации дымоудаления (приточной противодымной вентиляции) предусматриваются:

- в помещения кладовых жильцов (естественная компенсация дымоудаления);
- в межквартирные коридоры в жилых секциях и вестибюли входных групп.

Системы приточной противодымной вентиляции, для создания избыточного давления в защищаемых помещениях, предусматриваются:

- во все лифтовые шахты лифтов, имеющих режим «перевозка пожарных подразделений», при этом подпор воздуха осуществляется индивидуальными системами;
- во все лифтовые шахты пассажирских лифтов;
- в незадымляемые лестничные клетки типа Н2;
- в пожаробезопасные зоны (лифтовые холлы) на первых этажах зданий.

Для систем приточной противодымной вентиляции, обеспечивающих подпор в пожаробезопасные зоны, предусмотрен подогрев воздуха (до $+18^{\circ} \mathrm{C}$) с использованием электрических воздухонагревателей.

Для систем подпора и компенсации дымоудаления приемные отверстия для наружного воздуха предусмотрены на расстоянии не менее 5 м от выбросов продуктов горения системами противодымной вытяжной вентиляции.

Управление исполнительными элементами оборудования противодымной вентиляции осуществляется в автоматическом (от автоматической пожарной сигнализации) и дистанционном (с пульта дежурной смены диспетчерского персонала и от кнопок, установленных у эвакуационных выходов с этажей или в пожарных шкафах) режимах. Размеры проходных сечений вентиляционных каналов соответствуют расчетной максимальной скорости газовых и воздушных потоков. Оборудование, применяемое для противодымной вентиляции (огнезащитное покрытие воздуховодов, дымовые и противопожарные клапаны, вентиляторы противодымной вентиляции), должно быть сертифицировано в соответствии с системой противопожарного нормирования.

Противодьмная защита помещений кладовььх. Из помещения кладовых жильцов площадью более $200 \mathrm{~m}^{2}$, расположенных в подвальной части, предусмотрены системы дымоудаления и компенсации дымоудаления. Системы дымоудаления предусмотрены с механическим побуждением. Вытяжные противодымные вентиляторы располагаются на кровле зданий. Система компенсации дымоудаления в помещения кладовых принята естественного типа с подачей воздуха в нижнюю зону помещения. Забор наружного воздуха предусматривается не менее $2-у х$ м от уровня земли.

Противодьмная защита встроенньх помещений. Системы противодымной вентиляции для встроенных помещений не предусматриваются согласно п.7.2-7.3 СП 7.13130.2013.

Противодьммная защита жилой части зданий. Системы противодымной вентиляции жилой части зданий запроектированы с учетом деления зданий на пожарные отсеки. Самостоятельные системы противодымной вентиляции предусмотрены для каждой секции зданий.

Проектом предусмотрены системы дымоудаления из межквартирных коридоров жилых секций, а также вестибюлей (холлов) входных групп. Вентиляторы систем дымоудаления располагаются на кровле зданий. Выброс удаляемого дыма осуществляется на высоте не менее 2-х м от сгораемых материалов покрытия кровли либо на высоте менее $2-x$ м, но при условии защиты кровли несгораемыми материалами. Система компенсации дымоудаления из межквартирных коридоров принята механического типа. Система компенсации дымоудаления в вестибюль принята механического типа. Вентиляторы компенсации расположены на кровле зданий.

Во все лифтовые шахты зданий предусмотрена подача наружного воздуха при пожаре самостоятельными системами подпора. Подача воздуха осуществляется с кровли в верхнюю зону лифтовой шахты. Вентиляторы систем подпора в лифтовые шахты расположены на кровле зданий.

При выходе из лифтов на первых этажах зданий, при наличии в данной секции квартир для маломобильных групп населения, предусматрива-

ются пожаробезопасные зоны (лифтовые холлы), подпор в которые осуществляется отдельной противопожарной системой. Вентиляторы подпора, обслуживающие пожаробезопасные зоны, расположены на кровле зданий.

Эвакуационные лестничные клетки в каждом корпусе приняты типа Н2 с подпором воздуха при пожаре. Для обеспечения условия не превышения максимального давления 150 Па, предусмотрена распределенная подача воздуха, в верхнюю зону с кровли и нижнюю зоны с уровня 1-го этажа. Вентиляторы, обслуживающие системы подпора верхней части лестничных клеток, устанавливаются на кровле, а вентиляторы системы подпора нижней части лестничных клеток расположены в помещениях венткамер подпора на уровне техподполья.

ДОО. Для обеспечения безопасной эвакуации людей из здания при пожаре, возникшем в одном из помещений, предусмотрены системы при-точно-вытяжной противодымной вентиляции с механическим побуждением.

Вытяжная вентиляция для удаления продуктов горения предусматривается:из коридоров длиной более 15 м без естественного освещения.

Приточная вентиляция (подпор воздуха) предусматривается:

- в тамбур-шлюы перед лифтом в подвальном этаже;
- в зоны безопасности для МГН;
- для компенсации удаляемых продуктов горения.

Огнестойкость элементов систем противодьмной зачиты. Предел огнестойкости воздуховодов систем общеобменной и противодымной вентиляции, а также противопожарных клапанов принят согласно СП 7.13130.2013.

Допускается применение мягких вставок и негорючих материалов. У вентиляторов систем вытяжной противодымной вентиляции взамен устройства обратных клапанов предусмотрена установка противопожарных клапанов согласно п. 7.11д) СП 7.13130.2013.

Вентиляторы вытяжной противодымной вентиляции размещаются на кровле зданий с ограждениями для защиты от доступа посторонних лиц.

Вентиляторы систем подпора воздуха расположены в венткамерах подпора в подвальном этаже и на кровле.

У вентиляторов систем приточной противодымной вентиляции взамен устройства обратных клапанов предусмотрена установка противопожарных клапанов (в морозостойком исполнении), согласно п. 7.11д) СП 7.13130.2013.

Управление системами противодытмной вентилячии при пожаре. Управление системами противодымной вентиляции осуществляется в соответствии с алгоритмом комплексной противопожарной защиты проектируемого жилого комплекса в автоматическом режиме от автоматической пожарной сигнализации и автоматической системы пожаротушения (AПTT), а также в дистанционном режиме с пульта диспетчерского пульта и кнопок, установленных у эвакуационных выходов.

Режимы включения систем противодымной вентиляции разработаны для различных вариантов пожароопасных ситуаций, определяемых местом возникновения пожара в здании, т.е. расположением горящего помещения на любом из его этажей.

При включении систем противодымной вентиляции должны отключаться все системы общеобменной вентиляции в здании. Включение вытяжной противодымной вентиляции должно осуществляться с опережением на 20-30 секунд относительно включения приточных противодымных систем вентиляции.

Исполнительные механизмы противопожарных клапанов должны сохранять заданное положение створки клапана при отключении электропитания привода клапана. Управление исполнительными элементами оборудования противодымной вентиляции должно осуществляться в автоматическом (от автоматической пожарной сигнализации) и дистанционном (с пульта дежурной смены диспетчерского персонала и от кнопок, установленных у эвакуационных выходов с этажей или в пожарных шкафах) режимах.

Автоматизаұия. Системы общеобменной вентиляции автоматизируются и оборудуются средствами контроля работы.

Все системы вентиляции оборудуются средствами автоматического регулирования, управления и дистанционного контроля автоматизированной системы управления (АСУ) здания.

Внутриплошадочныее сети связи: В соответствии с заданием на разработку проектной документации, техническим заданием на разработку проектной документации, техническими условиями ОАО «Ростелеком» МРФ «Москва» московский филиал от 19 марта 2014 года № 09/05/4524-14 (телефонизация и передача данных, радиофикация, телевидение) с монтажом между зданиями и сооружениями 1-4-го этапа комплекса 4 -х отверстной телефонной канализации (2515 м) по предлагаемой схеме из труб ПНД диаметром 100 мм с устройством по трассе смотровых колодцев ККС-3 57 шт.

Предусматривается прокладка:

- по кольцевой схеме от корпуса IV. 4 (4) (узловой корпус сетей связи) одномодовых волоконно-оптических кабелей мультсервисной оптической сети (телефонизация и передача данных, радиофикация, телевидение) на 16 волокон;
- по кольцевой схеме от корпуса IV. 2 (2) (с размещением ЦДП) одномодовый волоконно-оптический кабель на 16 волокон сети диспетчеризации;
- по схеме «звезда» до каждого корпуса от корпуса IV. 2 (2) (с размещением ЦДП) одномодовый волоконно-оптический кабель на 16 волокон сетей безопасности и автоматической пожарной сигнализации.

Внеплощадочнье сети связи: Проектирование сетей проводит провайдер ОАО «Ростелеком» МРФ «Москва» московский филиал за счет своих сил и средств в соответствии с заданием на разработку проектной документации и техническими условиями ОАО «Ростелеком» МРФ «Москва» московский филиал от 19 марта 2014 года № 09/05/4524-14 (телефонизация и передача данных, радиофикация, телевидение).

Внутренние сети и системы связи:

Жилые корпуса: телефонизация, структурированная кабельная система, радиофикация, этажное оповещение, телевидение, охрана входов, охранная сигнализация, контроль и управление доступа, охранное телевидение, автоматическая пожарная сигнализация, оповещение и управление эвакуацией, домовой кабелепровод;

ДОО: телефонизация, структурированная кабельная система, радиофикация, объектовое оповещение, телевидение, охрана входов, охранная сигнализация, контроль и управление доступа, охранное телевидение, автоматическая пожарная сигнализация, оповещение и управление эвакуацией, домовой кабелепровод;

1-я очередь очистньхх сооружений: телефонизация по технологии сотовой связи стандарта с установкой стационарного шлюза или носимого аппарата, радиофикация с установкой радиоприемника УКВ с командным каналом, диспетчеризация с передачей контрольных сигналов через щит автоматики с GSM модемом, однорубежная охранная сигнализация с присоединением к контрольному прибору АПС, автоматическая пожарная сигнализация с выводом в корпоративную сеть через сеть автоматики, система звукового оповещения

в соответствии с заданием на разработку проектной документации, техническим заданием на разработку проектной документации, техническими условиями ОАО «Ростелеком» МРФ «Москва» московский филиал от 19 марта 2014 года № 09/05/4524-14 (телефонизация и передача данных, радиофикация, телевидение).

Монтаж общедомового кроссового, коммутационного, активного, усилительного, распределительного оборудования сетей связи предусмотрен:

- в секционных корпусах в напольных и настенных телекоммуникационных и монтажных шкафах в помещении связи подвального этажа;
- в корпусах башенного типа в аппаратной в подвальном этаже;
- в ДОО в аппаратной в подвале.

Помещения связи и аппаратные оборудуются запираемой металлической дверью, автоматической пожарной и охранной сигнализацией (автоматическим газовым пожаротушением), освещением, электропитанием, защитным заземлением и электроосвещением в соответствии с разделом 6 СП 134.13330.2012.

Телефонизачия. Сети с присоединением на абонентском уровне для обеспечения местной и городской телефонной связью квартир и техниче-

ских, административных и арендуемых нежилых помещениях от проектируемых IP шлюзов в помещениях связи в подвальных этажах корпусов. Распределительная и абонентская сети телефонизации, главные, этажные телефонные кроссы предусмотрены в составе единой СКС здания. Предусмотрена телефонизация помещений консьержей секций, технических и административных помещений по перечню и помещений связи.

Структурированная кабельная система. Предусматривается оборудование здания структурированной кабельной системой в соответствии с ГОСТ Р 53246-2008, международным стандартом ISO/IEC 11801, евростандартами EIA/TIA-568, 569 для обеспечения физической среды передачи сигналов и данных сети телефонизации и локальной вычислительной сети. Система топологии «иерархическая звезда» категории 5+ с многоточечным администрированием с монтажом в помещении связи оптического кросса и «медного» главного распределительного пункта системы, сетевого коммутатора с оптическими и медными портами. Система от проектируемого оптического ввода внутриквартальной сети для обеспечения телефонизации, передачи данных и предоставления мультимедийных услуг.

Система в составе оборудования главного и горизонтальных (этажных) коммутационных центров корпуса, оборудования рабочих мест, многопарных кабелей типа «витая пара» категории 5+ вертикальной кабельной подсистем. Коммутация кабелей предусмотрена в этажных патч-панелях в этажных шкафах связи УЭРМ. Предусмотрена установка информационных розеток в помещениях консьержей секций, технических и административных помещениях по перечню и помещений связи в жилых домах и автостоянке. Прокладка абонентского кабеля до квартир по заявкам владельцев квартир.

Радиофикачия. Сеть трехпрограммного вещания с напряжением 30 и 3 В от проектируемого сетевого коммутатора в составе структурированной кабельной системы с монтажом конверторов IP/СПВ в секционных помещениях связи в подвальном этаже корпуса, коробок ответвительных и ограничительных в этажных шкафах связи, абонентских радиорозеток в квартирах, служебных помещениях, прокладкой провода магистрального в каналах вертикального стояка и абонентского провода в горизонтальных кабельных каналах. Предусмотрена радиофикация помещений консьержей секций, административных помещений ДОО, технических помещений. Прокладка абонентского кабеля до квартир в ПВХ трубе в подготовке пола внеквартирного коридора.

Телевидение. Сеть в составе распределительной и абонентской сетей от оптического ввода, обеспечивающая прием и распределение не менее 50-ти аналоговых телевизионных программ в полосе частот 47-862 МГц. С монтажом оптического приемника в общедомовом помещении связи, секционных магистральных ответвителей домовых усилителей в этажных нишах стояки подвального этажа секций помещениях связи секций, абонентских ответвителей в слаботочных отсеках устройств этажных распределительных, прокладкой распределительных коаксиальных кабелей в от-

секах этажных шкафов. Прокладка абонентского кабеля до квартир по заявкам владельцев квартир. Предусмотрена установка ТВ розеток в административных помещениях и в помещении охраны ДОО.

Охрана входов. На базе многоабонентного аудиодомофонного оборудования для контроля прохода жильцов и гостей в секции с применением электронных идентификаторов, с обеспечением:

- управления подъездными дверями с квартирных сигнальных устройств, из помещений консьержей;
- двусторонней громкоговорящей связи от подъездной панели вызова с квартирами, между консьержами и посетителем;
- контроля доступа в жилые секции с применением электронных идентификаторов;
- разблокирования входных дверей по сигналу пожарной сигнализации

в составе: комплекты подъездного, этажного оборудования.
Комплекс технических средств безопасности. В составе систем адресной охранной сигнализации, контроля и управления доступом, аналогового охранного телевидения на базе (интегрированных) программнотехнических комплексов для обеспечения:

- круглосуточной охраны с двумя рубежами охраны входов в здания, технические помещения, периметра 1-го этажа, помещений консьержей от несанкционированного проникновения и доступа путем блокирования дверей, окон (витрин, витражей) и объемов помещений охранными извещателями, а также с передачей извещений персонала о нападении посредством тревожной сигнализации с помощью ручных тревожных извещателей;
- круглосуточного контроля и управления доступом в технические и административные помещения, помещения консьержей с применением электронных идентификаторов с возможностью работы в автономном режиме, с функциями контроля прохождения персонала через установленные точки доступа, оперативного контроля действий персонала и охраны, ведения протокола событий, оперативных изменений и разграничений прав доступа;
- круглосуточной видеонаблюдения с видеозаписью и видеоохраной внешней прилегающей территории, периметра и входов в здания, внутренних помещений и входов в режимные помещения, лифтовых холлов, въездов/выездов и помещений автостоянки с функциями обнаружения движения, круглосуточного контроля в полиэкранном режиме и круглосуточной видеозаписи с регистрацией времени, даты и номера видеокамеры. С возможностью оперативного просмотра архива на посту охраны без перерыва записи. С микшированием видеосигналов от наружных камер и видеокамер в холлах первых этажей секций в групповой сигнал телевидения для реализации просмотра упомянутых видеосигналов на телевизорах в квартирах.

Предусматривается:

- передача сигнала «Тревога», видеосигналов, извещений о состоянии охранных систем на ЦДП на 1 -м этаже секции 2 корпуса IV. 02 на единый АРМ КТСБ и на пульты контроля и управления и видеомониторы в помещениях консьержей и в помещении охраны ДОО по выделенным каналам и кабелям локальной вычислительной сети систем безопасности, на ПЦН02 по радиоканалам;
- хранение информации на едином сервере в ЦДП и секционных видеорегистраторах;
- прием сигналов от автоматической пожарной сигнализации для разблокирования дверей эвакуационных выходов;
- дистанционного разблокирования дверей помещений по сигналу пожарной сигнализации и ручного разблокирования из ЦДП;
- электропитание комплекса по I-й категории электроснабжения.

Комплекс в составе: АРМы, программное обеспечение, приборы контрольные охранные, контроллеры охранные и доступа, охранные извещатели магнитоконтактные, объемные и комбинированные, кнопки тревожные, считыватели смарт-карт, устройства преграждающие управляемые и устройства исполнительные, радиомодем с антенной, внутренние и наружные аналоговые видеокамеры, видеорегистраторы, контрольные видеомониторы, программное обеспечение, средства резервирования электропитания и кабельные линии.

Обеспечение доступа инвалидов. С устройством сетей:

- синхронной (световой и звуковой) сигнализации в зонах и помещениях, посещаемых МГН, с присоединением к сети оповещения;
- двусторонней громкоговорящей связи с диспетчером ЦДП застройки из квартир 1-го этажа для МГН на базе оборудования IP интерфонной связи из состава системы оповещения и управления эвакуацией.

Домовой кабелепровод. С устройством стояков с вертикальными каналами и горизонтальных каналов для скрытной и открытой прокладки кабелей и проводов сетей связи в составе: устройства этажные распределительные модульные (УЭРМ) с четырьмя встроенными слаботочными шкафами (учтены подразделом «Электрооборудование»), трубы стальные межэтажные для стояка; лотки металлические (в техподполье), трубы ПВХ в подготовке пола, гофротрубы ПВХ для горизонтальной прокладки кабелей сетей связи, коробки монтажные, коробки и ящики протяжные и закладные.

Автоматическая пожарная сигнализачия. Системы в жилых корпусах и ДОО на базе адресно-аналогового оборудования для своевременного автоматического определения появления факторов пожара, формирования и выдачи предварительного сигнала «Внимание» и сигнала «Пожар», управляющих сигналов с управлением с АРМ а пожарного поста в помещении ЦДП застройки и с пультов управления в помещениях консьержей и помещении охраны ДОО.

Средствами пожарной сигнализации оборудуются все помещения зданий, за исключением помещений с «мокрыми процессами», помещений категории В4 и Д. В каждом защищаемом помещении устанавливается не

менее двух дымовых адресно-аналоговых извещателей на перекрытиях и в пространстве за подвесными потолками. На путях эвакуации устанавливаются ручные адресные пожарные извещатели.

Система выполняет функции:

- прием и регистрация предварительных «Внимание» и тревожных сообщений «Пожар», расшифровка номера шлейфа пожарной сигнализации и устройства шлейфа;
- прием и регистрация сообщений «Неисправность», расшифровка номера шлейфа пожарной сигнализации и устройства шлейфа;
- передача управляющих сигналов в систему пожарной автоматики на автоматическое отключение систем вентиляции и кондиционирования при пожаре;
- передача управляющих сигналов в систему пожарной автоматики на автоматическое закрывание огнезадерживающих клапанов систем вентиляции;
- передача управляющих сигналов в систему пожарной автоматики на автоматическое включение системы дымоудаления с открыванием соответствующих клапанов дымоудаления;
- передача сигналов на запуск системы оповещения и управления эвакуацией людей при пожаре;
- передача управляющих сигналов в систему пожарной автоматики на автоматическое перемещение лифтов на этаж посадки и их блокировку с открытыми дверями;
- передача управляющих сигналов в систему пожарной автоматики на разблокирование преграждающих устройств системы контроля и управления доступом и домофонов;
- передача управляющих сигналов в систему пожарной автоматики на включение эвакуационного освещения.

С передачей: информации о неисправности, состоянии технических средств противопожарных систем пожарных отсеков (секций, корпусов), предварительного сигнала «Внимание» и сигнала «Пожар» от установок пожарной сигнализации всех секций в ЦДП по линии наружной сети локальной вычислительной сети АПС, информации о состоянии систем всех пожарных отсеков и сигнала «Пожар» от всех корпусов (секций), ДОО и автостоянки на объектовый пульт в ЦДГ с круглосуточным пребыванием дежурного персонала, сигнала «Пожар»на пульт «01» по радиоканалам, управляющих сигналов в сеть автоматики и диспетчеризации инженерных систем, лифтового оборудования, автоматики противопожарных систем и систему оповещения, пожаротушения и системы безопасности здания;

- с приемом контрольных сигналов от автоматики противопожарных систем;
- с реализацией режима позонного (поэтажного) контроля и управления системами противопожарной защиты;
- с раздельным устройством пожарных и технологических шлейфов).

Система в составе: АРМ, пульты контроля и управления секционные, преобразователи интерфейсов, контроллеры, приборы контрольные пожарные, блоки индикации, релейные, сигнально-пусковые и контрольнопусковые, модули изоляции шлейфов, радиомодем с антенной, адресные расширители, пожарные извещатели точечные адресно-аналоговые дымовые, автономные дымовые, безадресные тепловые и ручные, резервированные источники электропитания, оборудование домового кабелепровода, кабели силовые, соединительные и сигнализации, не распространяющие горение, с низким дымо- и газовыделением.

Система оповешения и управления эвакуачией. Предусматривается оборудование системы с автоматическим управлением от автоматической пожарной сигнализации:

- звуковой 1 -го типа в жилой части на базе звуковых оповещателей и автономных дымовых извещателей;
- речевой 3-го типа в помещениях общественного назначения жилых корпусов на базе комплекса речевого оборудования, речевых оповецателей настенных и потолочных, световых оповещателей с функцией обратной связи из зон оповещения с пожарным постом на базе подсистемы селекторной связи;
- речевой 3-го типа в помещениях ДОО на базе комплекса речевого оборудования, речевых оповещателей настенных и потолочных, световых оповещателей с функцией обратной связи из зон оповещения с пожарным постом на базе подсистемы селекторной связи.

Комплекс систем автоматизачии и диспетчеризауии инәженерного оборудования и систем противопожарной защитья обеспечивает автоматический контроль и регулирование параметров, автоматическое и дистанционное управление, необходимые блокировки, защиту от аварийных режимов, технологическую и аварийную сигнализацию в следующих системах:

Многоэтажнье жильие дома IV.03, IV. 05 - IV.09: общеобменной вентиляции общественных зон; теплоснабжения; водоснабжения; канализации; обогрева водосточных воронок; электроснабжения; электроосвещения; вертикального транспорта; учета потребления энергоресурсов; противопожарной защиты (система противодымной защиты, подача сигнала на отключение системы общеобменной вентиляции, система внутреннего противопожарного водопровода, формирование сигнала на перевод лифтов в режим «пожарная опасность», на разблокировку дверей на путях эвакуации, на включение систем оповещения);

ДОО: общеобменной вентиляции; теплоснабжения; водоснабжения; канализации; обогрева водосточных воронок; электроснабжения; электроосвещения; вертикального транспорта; учета потребления энергоресурсов; противопожарной защиты (система противодымной защиты, подача сигнала на отключение системы общеобменной вентиляции, система внутреннего противопожарного водопровода, формирование сигнала на перевод

лифтов в режим «пожарная опасность», на разблокировку дверей на путях эвакуации, на включение систем оповещения).

Интеллектуальные программируемые логические контроллеры, используемые для управления системами противопожарной защиты, имеют сертификат, подтверждающий соответствие пожарной безопасности.

Информация о состоянии инженерных систем предается на APM диспетчера, расположенного в помещении диспетчерской службы инженерных систем в корпусе IV.02.

Управление системой противодымной защиты здания выполнено на средствах пожарной сигнализации.

Автоматизация и диспетчеризация системы внутреннего противопожарного водопровода выполнена на базе комплекса «Спрут-2» фирмы «Плазма-Т», имеющего сертификат, подтверждающий соответствие пожарной безопасности.

Автоматизация и диспетчеризация систем общеобменной вентиляции обеспечивает поддержание комфортной температуры воздуха в обслуживаемых помещениях, автоматическую защиту от замораживания воды в воздухонагревателях, сблокированное с электродвигателем вентилятора управление электроприводом воздушного клапана, технологическую и аварийно-предупредительную сигнализацию. Отключение приточных систем по сигналу «Пожар» выполняется с сохранением работы цепей защиты теплообменника от замерзания.

Автоматизация системы хозяйственно-питьевого водоснабжения выполнена на системе управления, поставляемой комплектно с насосами. Комплектные щиты управления насосных станций обеспечивают поддержание постоянного давления в системе посредством частотного регулирования и передачу в систему диспетчеризации необходимой информации.

Автоматизация и диспетчеризация системы водоотведения выполняется на средствах автоматизации поставляемых комплектно с технологическим оборудованием и предусматривает автоматическое управление работой дренажных насосов (включение/выключение) в зависимости от уровня наполнения дренажных приямков, формирование обобщенного аварийного сигнала в систему диспетчеризации.

Диспетчеризация системы электроснабжения обеспечивает контроль срабатывания ABP , наличия напряжения на вводных панелях ВРУ, температуры в электрощитовых.

Автоматизация инженерного оборудования ИТП выполнена на базе микропроцессорных устройств с передачей всей необходимой информации в систему диспетчеризации эксплуатирующей организации. На вводе каждого ИТП предусмотрен коммерческий узел учета расхода теплоносителя.

Система диспетчеризации лифтов обеспечивает контроль состояния лифтового оборудования и двухстороннюю переговорную связь кабин лифтов для перевозки пассажиров с обслуживающим персоналом.

Проектом предусмотрена автоматизированная система учета энергоресурсов.

Групповая и одиночная кабельная разводка сетей автоматизации и диспетчеризации при открытом способе прокладке выполняется медными кабелями и проводами, не распространяющими горение при групповой прокладке, с пониженным дымо- и газовыделением (и с низкой токсичностью продуктов горения для помещений ДОО); при закрытом способе прокладки - медными кабелями и проводами, прокладываемыми в каналах, негорючих строительных конструкциях или погонажной арматуре имеющей сертификат, подтверждающий соответствие требованиям пожарной безопасности. Кабельные линии систем противопожарной защиты выполняются огнестойкими кабелями и проводами, не распространяющими горение при групповой прокладке, с пониженным дымо- и газовыделением (и с низкой токсичностью продуктов горения для помещений ДОО).

4.6. Технологические решения.

Технологические решения встроенных общественных помещений
В составе 1-го этажа корпусов IV.03, IV.05, IV. 06 - IV. 09 предусмотрены следующие отдельные блоки, имеющие отдельные входы.

Корпус IV. 03. Кафе на 32 посадочных места (блок № 1) в осях (А-Б/1$2 / 1$), работает на полуфабрикатах высокой степени готовности.

Количество блюд в сутки - 750.
Производственный персонал - 4 человека в смену. Количество посетителей 32 человека. Режим работы в 1,5 смены.

В составе кафе зал для посетителей на 32 места. Производственные помещения: сервировочная, моечная столовой посуды, кладовая продуктов, оснащены современным тепловым, холодильным и механическим оборудованием, работающем на электроэнергии, мебелью в соответствии с представленной спецификацией. Доставка продуктов и вывоз отходов осуществляется по установленному временному графику специализированным транспортом.

Магазин непродовольственных товаров (блок № 4) в осях (В-Г/1-2/1).
В составе магазина торговый зал, кладовая товаров, помещение персонала, помещение уборочного инвентаря. Загрузка выполняется через вход в торговый зал во вне рабочее время.

Штатное расписание - 2 человека в смену. Режим работы в 1,5 смены.
Помещение клубного типа (блок № 5) в осях (Г/1-Д / 1-2/1), предназначен для организации курсов иностранного языка для взрослых. Предусмотрено три аудитории на 5 мест.

Штатное расписание - 4 человека в смену. Режим работы в 1 смену.
Мини-офисы (блок № 2) в осях (Б-В/1-2/1), (блок № 3) в осях (В-Г/12/1); блок № 6) в осях (Д-Е/1-2/1); (блок № 7) в осях (Д-Е/5-6); (блоки № 8 9) в осях (B/5-6).

Штатная численность - 22 человек. Режим работы в 1 смену.
В офисах предусмотрены санузлы, комната персонала и помещения уборочного инвентаря. Рабочее место каждого сотрудника оборудовано оргтехникой и мебелью.

Kopnyc IV. 05. Спортивный мини-зал (блок № 1) в осях (А-B/1-2/1) в следующем составе: тренажерный зал, зал для групповых занятий, раздевалки с душевыми и с/узлами, тренерская, инвентарная.

Штат персонала - 3 человека в смену. Режим работы в 1.5 смены.
Мини-офисы (блок № 2) в осях (Б-В/1-2/1); (блок № 3) в осях (В-Г/12/1); (блок № 6) в осях (Д-Е/1-2); (блок № 7) в осях (Д-Е/3-4); (блок № 8) в осях (Д-Е/5-6); (блок № 9) в осях (Г/1-Д/5-6); (блок № 10) в осях (Г/1-Д/56); (блок № 11) в осях (Г-В/5-6); (блок № 12) в осях (Б-В/5-6).

Штатная численность - 37 человек. Режим работы в 1 смену.
В офисах предусмотрены санузлы, комната персонала и помещения уборочного инвентаря. Рабочее место каждого сотрудника оборудовано оргтехникой и мебелью.

Магазин непродовольственных товаров (блок № 4) в осях (В-Г/1-2/1). В составе магазина: торговый зал, кладовая товаров, помещение персонала, помещение уборочного инвентаря. Загрузка выполняется через вход в торговый зал во вне рабочее время.

Штатное расписание - 2 человека в смену. Режим работы в 1,5 смены.
Магазин продовольственных товаров (блок №5) в осях (Г/1-Д/1-2/1).
В составе магазина: торговый зал, кладовая суточного запаса, помещение персонала, помещение уборочного инвентаря. Загрузка выполняется через вход в торговый зал во вне рабочее время.

Штатное расписание - 2 человека. Режим работы в 1,5 смены.
Корпус IV.06. Стоматология: режим работы - 1,5 смены; штат персонала -4 человека в смену.

Стоматологический чентр для взрослых на 36 посещений в день предназначен для оказания стоматологической помощи.

В состав входят следующие основные помещения: комната персонала с гардеробной, кабинет стоматолога-терапевта, помещение уборочного инвентаря, кладовая медицинских отходов, кладовая грязного белья, стерилизационная, санузел.

Все помещения стоматологического центра в соответствии со своим функциональным назначением оснащены современным набором медицинского оборудования, мебели и инвентаря.

Все помещения стоматологического центра обеспечены соответствующими инженерными сетями и системами.

Все помещения убираются с использованием промышленных уборочных средств.

Сбор мусора и отходов осуществляется по месту их образования в оснащенные крышками мусорные бачки.

Временное хранение и накопление отходов осуществляется в кладовой медицинских отходов.

Мини-офис блок № 2: режим работы - 1 смена; штат персонала - 4 человек; блок № 3: режим работы - 1 смена; штат персонала - 5 человек.

Корпус IV.07. Мини-офис блок № 1: режим работы - 1 смена; штат персонала - 6 человек.

Корпус IV.08. Мини-офис блок № 1: режим работы - 1 смена; штат персонала - 4 человека; блок № 2: режим работы - 1 смена; штат персонала -3 человека; блок № 3: режим работы - 1 смена; штат персонала -4 человека; блок № 4: режим работы - 1 смена; штат персонала - 4 человека; блок № 5: режим работы - 1 смена; штат персонала - 5 человек.

Корпус IV.09. Мини-офис (блок № 2): режим работы - 1 смена; штат персонала - 6 человек.

В состав каждого мини-офиса входят следующие основные помещения: офисное помещение, комната персонала, санузел. Офисное помещение оснащено необходимым комплектом офисного оборудования и мебели. Комната персонала предназначена для отдыха и приема пищи персоналом.

Технологические решения дошкольной образовательной организачии Kорпус IV.10. Размещается в отдельно стоящем 2-3-этажном с подвалом здании.

Вместимость - 216 мест, 10 групп.
Состав групп: ясельная группа - 2 группы по 20 человек; возраст от 3x до 4 -х лет -2 группы по 24 человека каждая; возраст от 4 -х до 5 -ти лет 2 группы по 24 человека каждая; возраст от 5 -ти до 6 -ти лет -2 группы по 20 человек каждая; возраст от 6 -ти до 7 -ми лет -2 группы по 20 человек каждая;

Все помещения в соответствии с их назначением разделены на функциональные зоны: групповые ячейки в составе: раздевальная, групповая, буфетная, спальная, туалетная; медицинские помещения в составе: приемная изолятора, палаты изолятора, медицинский кабинет, процедурный кабинет, санузел с местом для приготовления дезинфицирующих растворов; пищеблок; служебно-бытовые и специализированные помещения.

Набор помещений, их площади и оснащение технологическим оборудованием, мебелью и инвентарем выполнено в соответствии с требованиями действующих норм к детским дошкольным учреждениям.

В составе предусматривается: зал для гимнастических занятий; зал для музыкальных занятий; кружковые помещения (2 помещения).

Пищеблок размещается на 1-ом этаже здания. Загрузка продуктов осуществляется через отдельный вход. Работа пищеблока предусмотрена на сырье. Для доставки готовых блюд на 2 -ой и 3 -ий этажи в групповые проектом предусмотрен грузовой лифт, грузоподъемностью 100 кг.

Постирочная размещается в подвале здания. В составе постирочной предусмотрено: помещение приема и сортирования грязного белья, помещение стиральной, помещение гладильной, кладовая чистого белья. Производительность постирочной принята 60 кг в смену.

Штат - 45 человек.
Режим работы - с 7.00 до 19.00 по 12 часов в день.

4.7. Проект организации строительства

Проект организауии строительства корпусов IV.03, IV. 05 - IV. 09 и детского дошкольного учреждения (корпус IV.10).

Подготовительный период строительства включает расчистку территории и вертикальную планировку, устройство ограждения строительной площадки и временных дорог, установку временных административнобытовых помещений и пунктов мойки колёс автотранспорта, организацию общеплощадочного складского хозяйства, геодезические работы, устройство освещения строительной площадки, обеспечение строительной площадки противопожарным инвентарём и выполнение противопожарных мероприятий, установку контейнеров для сбора бытового и строительного мусора. Планировочные работы осуществляются с помощью бульдозеров. Монтажные работы осуществляются с помощью автомобильного крана КС-4573.

Основной период включает строительство двух многоэтажных многоквартирных жилых домов секционного типа (корпусов IV. 03 и IV.05), четырёх многоэтажных многоквартирных жилых домов башенного типа (корпуса IV.06, IV.07, IV. 08 и IV.09) и дошкольной образовательной организации ДОО (корпус IV.10).

Проектом предусматривается поэтапное строительство. На первом этапе осуществляется возведение двух многоэтажных жилых домов башенного типа (IV.06, IV.07). Второй этап включает строительство двух многоэтажных жилых домов башенного типа (IV.08, IV.09). На третьем и четвёртом этапах предусмотрено возведение многоэтажных секционных жилых домов (IV. 03 и IV.05). Заключительный этап включает строительство ДОО (IV.10).

Строительство каждого этапа начинается с отставанием три месяца от начала предыдущего.

Работы по каждому из корпусов начинаются с механизированной откопки котлована. Механизированная откопка котлована осуществляется с помощъю экскаваторов Hitachi, оснащённых ковшом «обратная лопата» объёмом $1,0-2,0$ куб. м. В процессе выполнения земляных работ проектом предусматривается сбор поверхностных вод и атмосферных осадков методом открытого водоотлива с обустройством зумпфов и откачкой воды насосами. Механизированная откопка производится с недобором. В котловане корпуса IV. 03 на одном из участков предусматривается замена насыпных грунтов на песок средней крупности с послойным уплотнением до коэффициента 0,95 . В процессе выполнения работ производится контроль качества уплотнения полевыми и лабораторными методами.

После завершения механизированных земляных работ производится подготовка основания и устройство фундаментов зданий. На отметке дна котлованов после устройства отдельно расположенных фундаментов выполняется установка башенных кранов, с помощью которых предусматривается возведение подземной и надземной части зданий. Монтаж и демон-

таж башенных кранов осуществляется с помощью автомобильного крана Liebherr LTM 1060.

Для корпусов IV. 05 IV.08, IV. 10 и корпуса IV. 03 кроме угловой секции предусматривается устройство фундаментных плит на естественном основании. При возведении корпуса IV. 10 кроме фундаментных плит осуществляется устройство ленточных и отдельно стоящих столбчатых фундаментов. После окончания механизированной откопки выполняется добор грунта вручную, устройство бетонной подготовки, гидроизоляции, защитной цементно-песчаной стяжки, производится армирование и бетонирование фундаментной плиты, ленточных и столбчатых фундаментов.

Для корпусов IV. 06 IV. 07 , IV. 09 и угловой секции корпуса IV. 03 предусматривается устройство свайного основания из железобетонных свай сечением 300×300 мм длиной $8,0,10,0$ и 12,0 м. При выполнении свайных работ проектом предусмотрено использование копрового оборудования на базе экскаватора ЭО-5111. До начала массового погружения предусматриваются статические и динамические испытания опытных свай. Разгрузка и раскладка свай осуществляется с помощью гусеничного крана РДК-25 грузоподъёмностью 25 тонн.

По окончании свайных работ производится устройство бетонной подготовки, срубка оголовков свай, устройство гидроизоляции, защитной це-ментно-песчаной стяжки, армирование и бетонирование плитного ростверка.

После устройства фундаментов здания осуществляется возведение монолитных железобетонных конструкций подземной части, производятся гидроизоляционные работы и утепление наружных стен, устраивается пристенный дренаж, выполняется обратная засыпка пазух котлована с послойным уплотнением, начинается строительство надземной части. Обратная засышка производится с использованием бульдозеров. Для послойного уплотнения предусматривается использование электрических трамбовок.

Возведение монолитных железобетонных каркасов зданий осуществляется с использованием башенных кранов. Для строительства корпусов IV. 03 и IV. 05 предусматривается использование шести башенных кранов Potain MD 125 с длиной стрелы $45,0-50,0$ м и грузоподъёмностью $2,2-8,0$ тонн. При возведении каждого из корпусов IV.06, IV.07, IV.08, IV. 09 и IV. 10 предусмотрено использование башенного крана Potain MC 68 с длиной стрелы 30,0 м и грузоподъёмностью до 3,0 тонн. Инженерные сооружения возводятся с использованием автомобильных кранов.

При возведении монолитных железобетонных конструкций в процессе строительства жилого комплекса бетонирование предусматривается с помощью автобетононасосов Putzmeister и с использованием башенных кранов. Доставка бетона на строительную площадку осуществляется в автобетоносмесителях. Уплотнение бетонной смеси производится с помощью глубинных вибраторов, вибраторов общего типа и вибрационных реек.

После возведения монолитных железобетонных каркасов зданий осуществляется устройство кровли, производятся каменные, фасадные, инже-нерно-технические и отделочные работы, выполняется прокладка внутриплощадочных инженерных сетей.

По завершении работ по строительству зданий проектом предусматривается устройство подпорных стен. Механизированная откопка траншей выполняется малогабаритным экскаватором. Подача материалов и опалубки к месту производства работ выполняется автокраном. Бетонирование конструкций осуществляется с помощью автобетононасоса.

В процессе строительства проектом предусмотрены мероприятия по геотехническому мониторингу.

При подготовке объекта к сдаче проектом предусмотрено благоустройство строительной площадки.

В проекте отражены мероприятия по охране труда, пожарной безопасности, сохранению окружающей природной среды.

В проекте отражены потребности в основных строительных машинах, механизмах, автотранспорте, электроэнергии, рабочих кадрах строителей.

Продолжительность строительства в проекте составляет 36 месяцев, в том числе подготовительный период 2 месяца.

Проект организачии строительства локальных очистных сооружений поверхностных сточных вод ЛОС (V.II)

Подготовительный период строительства включает расчистку территории, геодезические работы, устройство ограждения строительной площадки, освещения и сигнального ограждения мест производства работ, устройство временных дорог, установку временных зданий и сооружений, организацию площадей складирования, обеспечение строительной площадки противопожарным инвентарём и выполнение противопожарных мероприятий, установку пункта мойки колёс автотранспорта.

Основной период строительства начинается с откопки котлована в естественных откосах. Механизированная откопка котлована осуществляется с помощью экскаватора Hitachi, оснащённого ковшом «обратная лопата» объёмом 0,65 куб. м. В процессе выполнения земляных работ проектом предусматривается сбор поверхностных вод и атмосферных осадков методом открытого водоотлива с обустройством зумпфов и откачкой воды насосами. Механизированная откопка производится с недобором.

После завершения механизированных земляных работ выполняется устройство свайного основания. Проектом предусматривается погружение свай сечением 300×300 мм длиной $7,0 \mathrm{~m}$ с шагом 1,5 м. Погружение свай предусматривается с помощью копровой установки СП67А. До начала массового погружения свай выполняются статические и динамические испытания сваай на опытном участке.

По завершении свайных работ производится добор грунта вручную, устройство бетонной подготовки, гидроизоляции, армирование и бетонирование фундаментной плиты очистных сооружений.

По окончании работ по устройству фундаментов сооружения осуществляется возведение монолитных железобетонных конструкций подземной части, резервуара, выполняются гидроизоляционные работы и обратная засыпка пазух котлована с послойным уплотнением. При выполнении обратной засыпки предусматривается использование бульдозера Д170. Послойное уплотнение осуществляется с помощью электрических и пневматических трамбовок.

При возведении монолитных железобетонных конструкций в процессе строительства бетонирование предусматривается с помощью автомобильного крана крана КАТО. Доставка бетона на строительную площадку осуществляется в автобетоносмесителях. Уплотнение бетонной смеси производится с помощью глубинных и поверхностных вибраторов.

После завершения работ по подземной части осуществляется возведение конструкций надземной части сооружения, устройство кровли, монтаж навесных сэндвич-панелей, производятся инженерно-технические и отделочные работы.

При подготовке объекта к сдаче проектом предусмотрено благоустройство строительной площадки.

В проекте отражены мероприятия по охране труда, пожарной безопасности, сохранению окружающей природной среды.

В проекте отражены потребности в основных строительных машинах, механизмах, автотранспорте, электроэнергии, рабочих кадрах строителей.

Продолжительность строительства в проекте составляет 9,7 месяцев, в том числе подготовительный период 1,0 месяц.

Проект организачии строительства коллектора

Подготовительный период строительства включает расчистку территории, геодезические работы, устройство ограждения строительной площадки, освещения и сигнального ограждения мест производства работ, устройство временных дорог, установку временных зданий и сооружений, организацию площадей складирования, обеспечение строительной площадки противопожарным инвентарём и выполнение противопожарных мероприятий, установку пункта мойки колёс автотранспорта.

Основной период строительства начинается с откопки траншеи в естественных откосах. Механизированная откопка котлована осуществляется с помощью экскаватора ЭО-3322, оснащённого ковшом «обратная лопата» объёмом 0,65 куб. м. В процессе выполнения земляных работ проектом предусматривается сбор поверхностных вод и атмосферных осадков методом открытого водоотлива с обустройством зумпфов и откачкой воды насосами. Механизированная откопка производится с недобором.

После завершения механизированных земляных работ производится добор грунта вручную, устройство основания, монтаж труб коллектора и возведение монолитных железобетонных конструкций колодцев.

Монтажные работы осуществляются с помощью автомобильных кранов КС-5473А и Като. При возведении монолитных железобетонных кон-

струкций доставка бетона на строительную площадку осуществляется в автобетоносмесителях. Бетонирование конструкций выполняется с использованием автомобильного крана. Уплотнение бетонной смеси производится с помощью глубинных и поверхностных вибраторов.

По окончании монтажных работ и завершения возведения монолитных железобетонных конструкций, производятся гидроизоляционнње работы, выполняется обратная засыпка пазух котлована с послойным уплотнением, предусматривается проведение испытаний. При выполнении обратной засыпки предусматривается использование бульдозера ДЗ-130. Послойное уплотнение осуществляется с помощью пневматических трамбовок.

При подготовке объекта к сдаче проектом предусмотрено благоустройство строительной площадки.

В проекте отражены мероприятия по охране труда, пожарной безопасности, сохранению окружающей природной среды.

В проекте отражены потребности в основных строительных машинах, механизмах, автотранспорте, электроэнергии, рабочих кадрах строителей.

Продолжительность строительства в проекте составляет 0,9 месяца.

4.8. Перечень мероприятия по охране окружающей среды
 Мероприятия по охране атмосферного воздуха

Источниками выделения загрязняющих веществ в атмосферу при эксплуатации объекта будут автомобили, размещаемые на наземных автостоянках, автотранспорт, обслуживающий жилой комплекс, площадки вывоза мусора и локальные очистные сооружения ливневого стока.

Планируемый проектными материалами выброс загрязняющих веществ в атмосферный воздух будет осуществляться от двадцати неорганизованных источников выбросов. От проектируемых источников в атмосферу поступят загрязняющие вещества четырнадцати наименований. Декларируемый валовый выброс составит 3,503 т/год, при максимальной суммарной мощности выброса 0,329 г/с.

Оценка выбросов загрязняющих веществ проводилась на основании результатов расчета рассеивания приземных концентраций с помощью программы «УПРЗА «Эколог». Согласно проведенным расчетам реализация проектных предложений не приведет к сверхнормативному загрязнению атмосферного воздуха на рассматриваемой территории и нормируемых объектах. Влияние проектируемого объекта на загрязнение атмосферного воздуха является допустимым.

В период проведения работ по строительству 2-го и 4-го этапов 1-ой очереди строительства источниками выделения загрязняющих веществ в атмосферу является грузовой автотранспорт, строительная техника, сварочные и земляные работы. Расчетным путем определено, что загрязнение атмосферного воздуха на территории нормируемых объектов окружающей застройки в наиболее напряженные период при условии соблюдения мероприятий по снижению выбросов не приведет к сверхнормативному загряз-

нению воздуха.

Мероприятия по охране водных ресурсов

Источником хозяйственно-питьевого водоснабжения являются четыре артезианские скважины (две рабочие и две резервные) в составе водозаборного узла производительностью 3000 кум.м/сут. Бытовых сточных вод при эксплуатации ВЗУ не образуется. Предусматриваемый после строительства режим профилактических и ремонтных мероприятий обеспечит минимальное экологическое воздействие на водную среду района проектирования.

Выпуск сточных вод планируется в проектируемую сеть канализации в соответствии с техническими условиями на водоснабжение и канализование 1 -й очереди жилого комплекса «Кутузово» ОАО «Мосводоканал» от 04 апреля 2013 года № 21-0680/13.

Поверхностные воды с кровли и с территории участка отводятся в проектируемую сеть ливневой канализации с локальными очистными сооружениями, откуда после очистки, согласно предварительному разрешению заместителя главы администрации муниципального образования Сельское поселение Кутузовское Александрова А.А. на размещение точки сброса, будут сбрасываться в р. Горетовка. Функционирование запроектированных очистных сооружений в штатном режиме, в соответствии с проектными показателями очистки, будет обеспечивать минимальное воздействие на водный объект в рамках установленных нормативов качества. До ввода в эксплуатацию локальных очистных сооружений необходимо получить разрешительные документы на сброс стоков после очистных сооружений в водный объект в соответствующих инстанциях.

Проектом организации строительства предусматривается установка на выезде-выезде со строительной площадки трех постов мойки колес и днища автотранспорта, оборудованных системой оборотного водоснабжения с локальными очистными сооружениями. Строительная площадка обеспечивается свежей питьевой водой (для хозяйственно-бытовых, производственных и противопожарных нужд). На период проведения строительных работ по возведению объектов и на период эксплуатации предусматривается комплекс водоохранных мероприятий, позволяющий снизить негативное воздействие на поверхностные и грунтовые воды в районе расположения объектов.

Мероприятия по обращению с опасными отходами

В результате эксплуатации ВЗУ ожидается образование отходов общей массой 5,083 т/год.

В результате эксплуатации локальных очистных сооружений ливневых стоков ожидается образование отходов общей массой $63,255 \mathrm{~T} /$ год.

В результате эксплуатации жилых домов IV.03, IV. 05 - IV. 09 и детского дошкольного учреждения IV. 10 ожидается образование отходов общей массой 615,86 т/год.

Проектом определены места временного накопления отходов, их обустройство и предельные объемы накопления. Вывоз отходов с территории намечен по договорам со специализированными организациями.

Соблюдение разработанных правил сбора, хранения и транспортировки отходов позволит исключить отрицательное воздействие на окружающую среду при эксплуатации проектируемого объекта.

Мероприятия по обращению со строительными отходами
В результате проведения работ по строительству 2-го и 4-го этапов 1 ой очереди строительства на строительной площадке образуются отходы производства и потребления, а так же отходы строительных материалов, отходы уничтожения зеленых насаждений и грунт подлежащий вывозу. Суммарный нормативный объем образования отходов при проведении строительных работ за весь период строительства составит 77466,68 т.

Соблюдение разработанных правил сбора, хранения и транспортировки отходов позволит исключить отрицательное воздействие на окружающую среду при строительстве проектируемого объекта.

Мероприятия по охране почв и грунтов

Локальное нарушение почвенного покрова вследствие проведения строительных работ не повлечет за собой изменений в структуре и функционировании почвенного покрова прилегающих территорий.

На период проведения строительных работ и период эксплуатации объекта предусмотрен ряд мероприятий по предотвращению загрязнения почвенного покрова на территории. По окончании строительства территория будет благоустроена.

Мероприятия по охране объектов растительного мира

Согласно представленной дендрологической части проекта на территории первой очереди строительства (этапы 2-5) произрастает 1279 деревьев и 986 кустарников. Вырубке подлежат 1279 деревьев (112 в удовлетворительном состоянии, 192 в неудовлетворительном состоянии, 975 в аварийном состоянии) и 986 кустарников (в неудовлетворительном состоянии). Компенсация за вырубаемые деревья предусмотрена в денежной форме. Перед началом строительства необходимо получить порубочный билет в установленном порядке.

Воздействие объекта на животный мир будет ощущаться на стадии функционирования жилой застройки и выразится в увеличении возможностей для размножения паразитов - грызунов и насекомых. В целях исключения подобного воздействия, которое также негативно сказывается на общем эстетическом уровне объекта, предусматривается ряд мер, направленных на недопущение возрастания численности популяций вредителей.

Оченка документачии на соответствие санитарноэпидемиологическим нормам и правилам

Объемно-планировочные решения зданий комплекса предусматривают пространственную взаимосвязь и необходимую изоляцию различных структурно-функциональных групп помещений.

Состав и площади помещений жилых корпусов соответствуют гигиеническим требованиям, предъявляемым СанПиН 2.1.2.2645-10 «Санитар-но-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях».

Нежилые помещения административного назначения запроектированы с учетом необходимой функциональной изоляции. Размещение рабочих мест с ПЭВМ принято в соответствии с требованиями СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронновычислительным машинам и организации работы», для работающего персонала предусмотрены необходимые санитарно-бытовые помещения.

Состав и площади групповых, спален, раздевальных, туалетных, залов, пищеблока, административных, вспомогательных помещений и прогулочных площадок проектируемого ДОО на 216 мест приняты в соответствии с заданием на проектирование, с учетом количества детей и персонала и соответствуют гигиеническим требованиям, предъявляемым СанПиН 2.4.1.3049-13 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы дошкольных образовательных организаций».

Принципы изоляции групповых ячеек и поточности технологических процессов соблюдаются.

Состав, площади и внутренняя планировка организаций торговопродовольственного назначения обеспечивают пространственную взаимосвязь, необходимую функциональную изоляцию помещений, позволяют обеспечить соблюдение гигиенического принципа поточности и в целом соответствует гигиеническим требованиям СП 2.3.6.1066-01 «Санитарноэпидемиологические требования к организациям торговли и обороту в них продовольственного сырья и пищевых продуктов».

Планировочные решения, а также состав и площади помещений кафе на 32 посадочных места предусматривают последовательность технологических процессов, исключающих встречные потоки сырых полуфабрикатов и готовой продукции, использованной и чистой посуды, а также встречного движения посетителей и персонала и отвечают требованиям СП.2.3.6.1079-01 «Санитарно-эпидемиологические требования к организациям общественного питания, изготовлению и оборотоспособности в них пищевых продуктов и продовольственного сырья».

Проектируемый жилой комплекс оснащается всеми современными видами благоустройства и необходимыми для эксплуатации инженерными системами, предусмотрена охранно-защитная дератизационная система. Отделка рассматриваемых помещений комплекса принята в соответствии с их функциональным назначением.

Организация размещения проектируемого водозаборного узла выполнена в соответствии с требованиями СанПиН 2.1.4.1110-02 «Зоны санитарной охраны источников водоснабжения и водопроводов питьевого назначения». Необходимо завершить согласование санитарноэпидемиологическим заключением в Управлении Роспотребнадзора по Московской области.

По данным представленных акустических расчетов установлено, что гигиенические нормы в помещениях проектируемого комплекса и на территории окружающей застройки будут соответствовать СН 2.2.4./2.1.8.56296 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки», при условии реализации предложенного проектом комплекса шумозащитных мероприятий (устройство звукопоглощающей облицовки в вентиляционных камерах, установка глушителей шума на приточные и вытяжные системы вентиляции).

Проектом предусмотрены организационные и конструктивные мероприятия по ограничению шума от работы строительной техники на период строительства ведение шумных работ в дневное время, разделение по времени работы шумных механизмов, применение шумозащитных экранов).

В результате исследования светоклиматического режима, проведенного ООО «Партнер-Эко» (Свидетельство СРО о допуске к работам № 0138.01-2009-7719567641-П-29) установлено, что расчетные параметры естественного освещения и инсоляционного режима в квартирах проектируемого жилого комплекса, на прилегающей территории, в помещениях и прогулочных площадках ДОО, а также в помещениях окружающей застройки будут удовлетворять требованиям СанПинН 2.2.1/2.1.1.1278-03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий» и СанПиН 2.2.1/2.1.1.1076-01 «Гигиенические требования к инсоляции и солнцезащите помещений жилых и общественных зданий».

Организация стройплощадки, набор и площади временных зданий и сооружений для санитарно-бытового обеспечения строительных рабочих приняты в соответствии с СанПиН 2.2.3.1384-03 «Гигиенические требовӑния к организации строительного производства и строительных работ».

4.9. Перечень мероприятий по обеспечению пожарной безопасности

К жилым зданиям, высотой более 28 метров, с двух сторон предусмотрены подъезды для пожарных автомобилей шириной не менее 6 м, включая тротуары, на расстоянии 8-10 м от края проезда до секций здания с односторонней ориентацией квартир. К секциям с двусторонней ориентацией квартир подъезды предусмотрены с одной стороны на расстоянии 8-10 м от края проезда, со 2-й стороны (внутреннего двора) на расстоянии 5-8 метров от здания.

На территорию здания дошкольной образовательной организации предусмотрены два въезда. Подъезды для пожарных автомобилей обеспе-

чены со всех сторон здания, шириной не менее $3,5 \mathrm{~m}$. Расстояние от края проезда до стены здания составляет 5-8 м.

Подъезд пожарных подразделений к зданию автостоянки запроектирован с двух сторон, шириной не менее $4,2 \mathrm{~m}$. Расстояние от края проезда до стены здания составляет 5-8 м.

К остальным сооружениям подъезд пожарных автомобилей предусмотрен с одной стороны.

Конструкции дорожной одежды и тротуаров, предусмотренных для проезда пожарных автомобилей, рассчитаны на нагрузку от пожарных автомобилей не менее 16 тонн на ось. Доступ пожарных во все помещения обеспечивается с применением пожарной подъемной техники и с использованием лифтов для пожарных в каждой секции.

Противопожарные расстояния между проектируемыми и существующими зданиями и сооружениями, приняты в соответствии с требованиями СП 4.13130.

Расстояние от открытых парковок автомобилей до зданий запроектировано требований в соответствии с требованиями п. 6.11.2 СП 4.13130.

Наружное пожаротушение обеспечивается от гидрантов, установленных на кольцевой водопроводной сети. Количество гидрантов принято не менее 2 -х на расстоянии не более 200 метров от здания с учетом длины рукавных линий. Расход воды на наружное пожаротушение обеспечивается в соответствии с требованиями таблиц № 1 и № 2 СП 8.13130. На фасадах комплекса предусмотрена установка световых указателей мест расположения пожарных гидрантов и мест размещения наружных патрубков для подключения передвижной пожарной техники к системам внутреннего противопожарного водопровода и водяного пожаротушения.

Время прибытия первого пожарного подразделения к объекту не превышает 20 минут.

Здания жилого комплекса корпуса IV.03, IV. 05 запроектированы II-ой степени огнестойкости, класса конструктивной пожарной опасности С0.

Помещения технического подполья, предназначенные для прокладки инженерных коммуникаций, технических помещений, ИТП, насосной без постоянного пребывания людей, относятся к категории по взрывопожарной и пожарной опасности В4, Д. Помещения хозяйственных кладовых относятся к категории по взрывопожарной и пожарной опасности B4.

Класс функциональной пожарной опасности помещений:
Ф1.3 - квартиры;
Ф2.1 - культурно-просветительные учреждения клубного типа;
Ф3.1 - помещения торговли;
Ф3.2 - предприятия общественного питания;
Ф4.3 - административные помещения, офисы;
Ф5.1 - технические помещения;
Ф5.2 - хозяйственные кладовые.
Пределы огнестойкости и классы пожарной опасности строительных конструкций предусмотрены в соответствии ст. 87, табл. 21, 22 Федераль-

ного закона от 22 июля 2008 года № 123-ФЗ и соответствует принятой степени огнестойкости и классу конструктивной пожарной опасности.

Площадь пожарного отсека в пределах этажа не превышает $2500 \mathrm{~m}^{2}$. Общая площадь квартир на этаже каждой секции предусматривается не более $500 \mathrm{~m}^{2}$.

Межсекционные стены запроектированы с пределом огнестойкости не менее REI 45.

Межквартирные стены и перегородки запроектированы с пределом огнестойкости не менее EI 30. Стены и перегородки, отделяющие внеквартирные коридоры от других помещений - не менее R(EI) 45.

Ограждения лестничных маршей, балконов и кровли предусматривается из негорючих материалов.

Предел огнестойкости лифтовых шахт принят REI 45 для обычных лифтов и REI 120 для лифтов с режимом перевозки пожарных подразделений, дверей шахт лифтов Е 30 - обычных и EI 60 - с режимом перевозки пожарных подразделений.

Фасады здания и теплоизоляция наружных стен предусмотрены из негорючих материалов.

Участки наружных стен в местах примыкания к перекрытиям (противопожарный пояс) между этажами выполнены глухими с обеспечением расстояния 1,2 м между верхом окна нижележащего этажа и низом окна вышележащего этажа.

Помещения кладовых категории В4 по пожарной опасности, технические помещения для размещения оборудования и инженерных систем, категорий В1 - В3 по пожарной опасности, размещаемые в пределах одного этажа, отделяются от коридоров и смежных помещений противопожарными перегородками 1-го типа.

Систем мусороудаления в корпусах не предусматривается.
Эвакуационные пути и выходы проектируемых частей зданий отвечают требованиям ст. 53, 89 Федерального закона от 22 июля 2008 года № 123-ФЗ, СП 1.13130.

Эвакуационные выходы из технического подполья ведут непосредственно наружу и не сообщаются с лестничными клетками жилой части зданий.

Из встроенных помещений кладовых жильцов, расположенных на цокольном этаже, эвакуационные выходы ведут наружу, через вестибюль цокольного этажа, не сообщающиеся с путями эвакуации с жилых этажей.

Из встроенных помещений кладовых жильцов, расположенных в подвале предусматривается не менее двух рассредоточенных эвакуационных выхода непосредственно наружу.

Для эвакуации из помещений общественного назначения на 1-м этаже запроектированы эвакуационные выходы непосредственно наружу, изолированные от выходов из жилой части здания. Из каждого изолированного блока нежилых помещений, расположенных на 1-м этаже, площадью до

300 м2 с пребывание не более 15 человек, предусмотрено по одному эвакуационному выходу.

Для эвакуации из помещений надземных этажей в каждой секции здания запроектированы незадымляемые лестничные клетки типа H 2 .

В секциях, расположенных на участке с уклоном, предусмотрены отдельные лестницы 2-го типа из цоколя до 1-го этажа, отделенные на уровне цоколя от смежных помещений противопожарными перегородками первого типа. Данные лестницы не являются эвакуационными.

Выходы из машинных отделений лифтов в незадымляемую лестничную клетку типа H 2 осуществляются через тамбуры.

Лестничные клетки типа H 2 имеют световые проемы в наружных стенах на каждом надземном этаже. Окна в указанных лестничных клетках предусматриваются неоткрывающимися.

Каждая квартира, расположенная на высоте более 15 m , обеспечена аварийные выходом на лоджию с глухим простенком 1,2 м от ее торца до оконного проема.

Ширина лестничных маршей лестничных клеток жилого дома принята не менее 1,05 метра, а лестничных клеток подвального этажа - не менее 0,9 метра.

Ширина наружных дверей лестничных клеток предусматривается не менее ширины марша лестницы.

Ширина лестничных площадок предусматривается не менее ширины марша лестницы.

В лестничных клетках не предусматривается размещение оборудования, выступающего из плоскости стен на высоте менее $2,2 \mathrm{~m}$, кроме шкафов для коммуникаций и пожарных кранов.

Наибольшее расстояние от дверей наиболее удаленной квартиры до выхода в лестничную клетку составляет не более 25 м.

Ширина внеквартирных коридоров в жилых секциях зданий предусмотрена не менее 1,5 м.

Для обеспечения безопасной эвакуации МГН с 1-го этажа и выше в лифтовых холлах лифтов для пожарных в каждой секции предусматривается устройство пожаробезопасных зон (ПБЗ). ПБЗ выделяются противопожарными преградами, имеющими пределы огнестойкости: стены - REI 90, перекрытия - REI 60. Конструкции ПБЗ запроектированы класса К0 (непожароопасные). Двери в пожаробезопасные зоны предусматриваются противопожарными с пределом огнестойкости EIS 60, самозакрывающимися с уплотнениями в притворах, в газодымонепроницаемом исполнении. Проектом предусмотрен подогрев подаваемого воздуха в пожаробезопасную зону.

Предусматривается оборудование помещений и зон общественных зданий и сооружений, посещаемых МГН, синхронной (звуковой и световой) сигнализацией, подключенной к системе оповещения о пожаре. Замкнутые пространства зданий (помещения различного функционального

назначения), оборудуются двусторонней связью с диспетчером или дежурным.

Выходы на кровлю предусматриваются в каждой секции непосредственно из лестничных клеток по лестничным маршам с площадкой перед выходом через противопожарную дверь 2-го типа (EI 30) размерами не менее $0,75 \times 1,5$ м. В местах перепада высот кровель более 1 м предусмотрено устройство пожарных лестниц типа П1.

Декоративные материалы, покрытия полов на путях эвакуации выполнены из материалов в соответствии с таблицей 28 , а помещений с таблицей 29 Федерального закона от 22 июля 2008 года № 123-ФЗ.

В корпусах предусматриваются системы противопожарной защиты, включающие в себя:

- автоматическую пожарную сигнализацию - защита всех помещений, выполненную в соответствии с требованиями СП 5.13130;
- внутренний противопожарный водопровод: защита жилых секций из расчета орошения каждой точки 2 струями с расходом 2,6 л/с, выполненный в соответствии с требованиями СП 10.13130;
- системы дымоудаления: из всех частей поэтажных коридоров и холлов жилой части, из коридоров этажей с помещениями кладовых, выполненные в соответствии с требованиями СПІ 7.13130;
- системы подпора воздуха: в шахты лифтов, самостоятельными системами в шахты лифтов для пожарных подразделений, в лестничных клетки типа H 2 , в объем пожаробезопасных зон с подогревом, для компенсации удаляемьх продуктов горения из помещений, выполненные в соответствии с требованиями СП 7.13130 ;
- системы оповещения людей при пожаре для жилой части 1-го типа, общественной части - 2-го типа;
- эвакуационное и аварийное освещение;
- электроснабжение систем противопожарной защиты предусмотрено по первой категории надёжности.

Здание оборудуется системой молниезащиты.
На сети хозяйственно-питьевого водопровода в санитарнотехническом узле каждой квартиры предусматривается отдельный кран (диаметром 15 мм) для присоединения шланга, оборудованного распылителем, для использования его в качестве первичного устройства внутриквартирного пожаротушения для ликвидации очага возгорания. Длина шланга обеспечивает возможность подачи воды в любую точку квартиры.

Вентиляция нежилых помещений 1 этажа предусмотрена через самостоятельный сборный железобетонный канал огнестойкостью не менее EI45.

В зданиях предусмотрены лифты для транспортирования пожарных подразделений выполненные в соответствии с требованиями ГОСТ P 53296-2009.

Здания жилого комплекса корпуса $I V .06, I V .07, I V .08$ и IV. 09 запроектированы I-ой степени огнестойкости, класса конструктивной пожарной опасности С0.

Помещения технического подполья, предназначенные для прокладки инженерных коммуникаций, технических помещений, ИТП, насосной без постоянного пребывания людей, относятся к категории по взрывопожарной и пожарной опасности В4, Д. Помещения хозяйственных кладовых относятся к категории по взрывопожарной и пожарной опасности B4.

Класс функциональной пожарной опасности помещений:
Ф1.3 - квартиры;
Ф4.3 - административные помещения, офисы;
Ф5.1 - технические помещения;
Ф5.2 - хозяйственные кладовые.
Пределы огнестойкости и классы пожарной опасности строительных конструкций предусмотрены в соответствии ст. 87, табл. 21, 22 Федерального закона от 22 июля 2008 года № 123 -ФЗ и соответствует принятой степени огнестойкости и классу конструктивной пожарной опасности.

Площадь пожарного отсека в пределах этажа не превышает 2500 м 2. Общая площадь квартир на этаже предусматривается не более $500 \mathrm{~m}^{2}$.

Межквартирные стены и перегородки запроектированы с пределом огнестойкости не менее EI 30. Стены и перегородки, отделяющие внеквартирные коридоры от других помещений - не менее R(EI) 45.

Жилые помещения отделены от общественных помещений противопожарными перегородками 1 -го типа и перекрытиями 2 -го типа без проемов.

Ограждения лестничных маршей, балконов и кровли предусматривается из негорючих материалов.

Предел огнестойкости лифтовых шахт принят REI 45 для обычных лифтов и REI 120 для лифтов с режимом перевозки пожарных подразделений, дверей шахт лифтов E 30 - обычных и EI 60 - с режимом перевозки пожарных подразделений.

Фасады здания и теплоизоляция наружных стен предусмотрены из негорючих материалов.

Участки наружных стен в местах примыкания к перекрытиям (противопожарный пояс) между этажами выполнены глухими с обеспечением расстояния 1,2 м между верхом окна нижележащего этажа и низом окна вышележащего этажа.

Помещения кладовых категории B4 по пожарной опасности, технические помещения для размещения оборудования и инженерных систем, категорий B1-B3 по пожарной опасности, размещаемые в пределах одного этажа, отделяются от коридоров и смежных помещений противопожарными перегородками 1-го типа.

Систем мусороудаления в корпусах не предусматривается.

Эвакуационные пути и выходы проектируемых частей зданий отвечают требованиям ст. 53, 89 Федерального закона от 22 июля 2008 года № 123-ФЗ, СП 1.13130.

Эвакуационные выходы из технического подполья ведут непосредственно наружу и не сообщаются с лестничными клетками жилой части зданий.

Из встроенных помещений кладовых жильцов, расположенных в подвале предусматривается не менее двух рассредоточенных эвакуационных выхода непосредственно наружу.

Для эвакуации из помещений общественного назначения на $1-$ м этаже запроектированы эвакуационные выходы непосредственно наружу, изолированные от выходов из жилой части здания. Из каждого изолированного блока нежилых помещений, расположенных на 1 -м этаже, площадью до $300 \mathrm{~m}^{2}$ с пребывание не более 15 человек, предусмотрено по одному эвакуационному выходу.

Для эвакуации из помещений надземных этажей в зданиях запроектированы незадымляемые лестничные клетки типа H 1.

Незадымляемость переходов через наружную воздушную зону лестничных клеток типа H 1 обеспечена конструктивными и объемнопланировочными решениями: переходы воздушной зоны незадымляемой лестничной клетки H 1 выполняются шириной не менее $1,2 \mathrm{~m}$ с с ограждением высотой не менее 1,2 м, ширина простенка между дверными проемами в наружной воздушной зоне предусматривается не менее 1,2 м. Между дверными проемами воздушной зоны незадымляемых лестничных клеток типа H 1 и ближайшими окнами жилых помещений ширина простенка предусмотрена не менее 2 метров.

Выходы из лестничных клеток предусмотрены непосредственно наружу.

Лестничные клетки типа H 1 имеют световые проемы в наружных стенах на каждом надземном этаже.

Каждая квартира, расположенная на высоте более 15 м, обеспечена аварийные выходом на лоджию с глухим простенком 1,2 м от ее торца до оконного проема.

Ширина лестничных маршей лестничных клеток жилого дома принята не менее 1,05 метра, а лестничных клеток подвального этажа - не менее 0,9 метра.

Ширина наружных дверей лестничных клеток предусматривается не менее ширины марша лестницы.

Ширина лестничных площадок предусматривается не менее ширины марша лестницы.

В лестничных клетках не предусматривается размещение оборудования, выступающего из плоскости стен на высоте менее 2,2 м, кроме шкафов для коммуникаций и пожарных кранов.

Наибольшее расстояние от дверей наиболее удаленной квартиры до выхода в лестничную клетку составляет не более 25 м.

Ширина внеквартирных коридоров в жилых секциях зданий предусмотрена не менее 1,5 м.

В соответствии с заданием на проектирование доступ маломобильных групп населения предусмотрен только на первый этаж.

Для эвакуации маломобильньх групп населения (МГН) из помещений 1-го этажа предусматриваются выходы через тамбур наружу.

Предусматривается оборудование помещений и зон общественных зданий и сооружений, посещаемых МГН, синхронной (звуковой и световой) сигналйзацией, подключенной к системе оповещения о пожаре. Замкнутые пространства зданий (помещения различного функционального назначения), оборудуются двусторонней связью с диспетчером или дежурным.

Выходы на кровлю предусматриваются в каждой секции непосредственно из лестничной клетки по лестничным маршам с площадкой перед выходом через противопожарную дверь 2-го типа (EI 30) размерами не менее $0,75 \times 1,5$ м. В местах перепада высот кровель более 1 м предусмотрено устройство пожарных лестниц типа П1.

Декоративные материалы, покрытия полов на путях эвакуации выполнены из материалов в соответствии с таблицей 28 , а помещений с таблицей 29 Федерального закона от 22 июля 2008 года № 123-ФЗ.

В корпусах предусматриваются системы противопожарной защиты, включающие в себя:

- автоматическую пожарную сигнализацию - защита всех помещений, выполненную в соответствии с требованиями СП 5.13130;
- внутренний противопожарный водопровод: защита жилых секций из расчета орошения каждой точки 3 струями с расходом 2,6 л/с, выполненный в соответствии с требованиями СП 10.13130;
- системы дымоудаления: из всех частей поэтажных коридоров и холлов жилой части, из коридоров этажей с помещениями кладовых, выполненные в соответствии с требованиями СП 7.13130;
- системы подпора воздуха: в шахты лифтов, самостоятельными системами в шахты лифтов для пожарных подразделений, в объем пожаробезопасных зон с подогревом, для компенсации удаляемых продуктов горения из помещений, выполненные в соответствии с требованиями СП 7.13130;
- системы оповещения людей при пожаре для жилой части 1-го типа, общественной части - 2-го типа;
- эвакуационное и аварийное освещение;
- электроснабжение систем противопожарной защиты предусмотрено по первой категории надёжности.

Здания оборудуются системами молниезащиты.
На сети хозяйственно-питьевого водопровода в санитарнотехническом узле каждой квартиры предусматривается отдельный кран (диаметром 15 мм) для присоединения шланга, оборудованного распыли-

телем, для использования его в качестве первичного устройства внутриквартирного пожаротушения для ликвидации очага возгорания. Длина шланга обеспечивает возможность подачи воды в любую точку квартиры.

Вентиляция нежилых помещений 1 этажа предусмотрена через самостоятельный сборный железобетонный канал огнестойкостью не менее EI45.

В зданиях предусмотрены лифты для транспортирования пожарных подразделений выполненные в соответствии с требованиями ГОСТ P 53296-2009.

Здание корпуса IV. 10 запроектировано II-ой степени огнестойкости, класса конструктивной пожарной опасности С0.

Класс функциональной пожарной опасности здания Ф1.1 - детское дошкольное учреждение.

Высота здания не более 9 м, площадь этажа не более 1400 м 2.
Пределы огнестойкости и классы пожарной опасности строительных конструкций предусмотрены в соответствии со ст. 87, табл. 21, 22 № 123ФЗ и соответствуют принятой степени огнестойкости и классу конструктивной пожарной опасности.

Помещения технического назначения, бытовые, хозяйственные и др. подобные помещения отделяются от соседних помещений и коридоров противопожарными перегородками 1-го типа и перекрытиями не ниже 3-го типа. Двери подсобных помещений (кладовых), помещений электрощитовых и вентиляционных камер, а так же других технических помещений проектируются с пределом огнестойкости не менее EI30.

Под спальными помещениями, актовыми залами, а также в подвальных этажах размещение помещений категорий B1-B3 не предусматривается.

Систем наружного утепления здания проектом не предусматривается.
Теплоизоляция и гидроизоляция оборудования, инженерных сетей выполнена из негорючих (НГ) материалов.

Покрытие кровли запроектировано из материалов, обеспечивающих конструктивную пожарную опасность не ниже К0.

Участок кровли на отметке $+7,20$, в месте перепада высот предусматривается из негорючих материалов, на расстоянии не менее 4 м от окна, либо выполняется обшивка данных элементов листовыми материалами НГ.

Эвакуационные пути и выходы проектируемого здания отвечают требованиям ст. 53, 89 Федерального закона от 22 июля 2008 года № 123-Ф3 и СП 1.13130.

Эвакуация людей из подземного этажа запроектирована по рассредоточенным эвакуационным выходам, ведущим непосредственно наружу.

Эвакуация детей и персонала из надземных этажей здания ДОО предусматривается по рассредоточенным лестничным клеткам типа Л1, ведущим непосредственно наружу. Расстояния от выходов из групповых ячеек до выхода наружу или на лестничную клетку не превышает 10 метров

при выходе в тупиковую часть коридора и не превышает 20 метров при выходе из помещений расположенных между лестничными клетками или наружными выходами.

Ширина маршей лестниц ДОО предусмотрена не менее 1,35 м. Между маршами лестниц предусматривается зазор не менее 75 мм.

Ширина выходов на лестничную клетку в надземных этажах принята не менее 1,35 м.

Перед наружной дверью (эвакуационным выходом) запроектирована горизонтальная входная площадка с глубиной не менее $1,5 \mathrm{~m}$.

Ширина лестничных площадок предусматривается не менее ширины марша лестницы.

Двери лестничных клеток предусмотрены самозакрывающимися. Тип доводчика для самозакрывания соответствует усилию для беспрепятственного открывания двери ребенком.

В лестничных клетках не предусматривается размещение оборудования, выступающего из плоскости стен на высоте менее 2,2 м, кроме шкафов для коммуникаций и пожарных кранов.

Высота ограждений лестниц, используемых детьми, составляет не менее 1,2 м.

В здании предусмотрен лифт для транспортирования пожарных подразделений выполненный в соответствии с требованиями ГОСТ Р 532962009.

Выходы из лифта на этажах с 1-го и выше предусматриваются через лифтовые холлы, выход в подвале через тамбур-шлюз с подпором воздуха при пожаре. На основном посадочном этаже лифтовой холл не выгораживается.

Для доставки пищи из пищеблока предусмотрен подъемник, с остановками на надземных этажах. Двери подъемника предусмотрены с пределом огнестойкости не менее Е 30.

На 2-м и 3-м этаже здания предусмотрены пожаробезопасные зоны (ПБЗ), расположенные в лифтовых холлах. Количество, площадь пожаробезопасных зон принята в соответствии с расчетом. ПБЗ выделяются противопожарными преградами, имеющими пределы огнестойкости: стены - REI 90, перекрытия - REI 60. Конструкции ПБЗ запроектированы класса К0. Двери в пожаробезопасную зону предусматриваются противопожарными с пределом огнестойкости EIS 60, самозакрывающимися с уплотнениями в притворах, в газодымонепроницаемом исполнении. Проектом предусмотрен подогрев подаваемого воздуха в пожаробезопасную зону.

Для эвакуации для маломобильных групп населения (МГН) из помещений 1-го этажа предусматривается выход через тамбур наружу. Глубина тамбуров запроектирована не менее 1,8 м при ширине не менее $2,2 \mathrm{~m}$. Уклон пандусов на путях передвижения инвалидов на колясках внутри и снаружи здания запроектирован не более 1:12.

Декоративные материалы, покрытия полов на путях эвакуации выполнены из материалов в соответствии с таблицей 28 , а помещений с таблицей 29 Федерального закона от 22 июля 2008 года № 123-ФЗ.

В музыкальном зале и спортивном зале предусмотрено применение облицовочных материалов с классом пожарной опасности не более:

- KM1 - для стен и потолков;
- КМ2 - для покрытий полов.

В здании предусматриваются системы противопожарной защиты, включающие в себя:

- автоматическую пожарную сигнализацию - защита всех помещений, выполненную в соответствии с требованиями СП 5.13130 , с выводом сигнала о пожаре в подразделение пожарной охраны от АПС в автоматическом режиме без участия персонала объекта;
- внутренний противопожарный водопровод - защита помещений из расчета орошения каждой точки 1 струей с расходом 2,6 л/с, выполненный в соответствии с требованиями СП 10.13130 ;
- системы дымоудаления: из всех частей поэтажных коридоров без естественного проветривания в том числе подвала, выполненные в соответствии с требованиями СП 7.13130;
- системы подпора воздуха: в тамбур шлюз перед входом в шахту лифта, в объем пожаробезопасных зон с подогревом, для компенсации удаляемых продуктов горения из помещений, выполненные в соответствии с требованиями СП 7.13130;
- системы оповещения людей при пожаре - защита всех помещений системой - 3-го типа;
- аварийное и эвакуационное освещение;
- электроснабжение систем противопожарной защиты предусмотрено по первой категории надёжности.

Здание оборудуется системой молниезащиты.
Предусматривается оборудование помещений и зон общественных зданий и сооружений, посещаемых МГН, синхронной (звуковой и световой) сигнализацией, подключенной к системе оповещения о пожаре. Замкнутые пространства зданий, где МГН может оказаться один оборудуются двусторонней связью с диспетчером или дежурным.

Здание Водозаборного узла запроектировано II-ой степени огнестойкости, класса конструктивной пожарной опасности С0.

Класс функциональной пожарной опасности здания Ф5.
В состав Объекта входят помещения различных классов по функциональной пожарной опасности, в том числе:

Ф3.6 - подсобные помещения;
$\Phi 5.1$ - производственные помещения.
Помещения отнесены категориям B4, Д по взрывопожарной и пожарной опасности.

Пределы огнестойкости и классы пожарной опасности строительных конструкций предусмотрены в соответствии со ст. 87, табл. 21, 22 Федерального закона от 22 июля 2008 года № 123-ФЗ и соответствуют принятой степени огнестойкости и классу конструктивной пожарной опасности.

Эвакуационные пути и выходы проектируемых частей зданий отвечают требованиям ст. 53, 89 Федерального закона от 22 июля 2008 года № 123-ФЗ, СП 1.13130.

Эвакуация изпомещений предусматривается непосредственно наружу и через соседнее помещение.

Здание Павильона очистных сооружений запроектировано IV степени огнестойкости, класса конструктивной пожарной опасности С2.

Класс функциональной пожарной опасности здания Ф5.1.
Помещения отнесены категориям Д по взрывопожарной и пожарной опасности.

Пределы огнестойкости и классы пожарной опасности строительных конструкций предусмотрены в соответствии со ст. 87, табл. 21, 22 Федерального закона от 22 июля 2008 года № 123-ФЗ и соответствуют принятой степени огнестойкости и классу конструктивной пожарной опасности.

Эвакуационные пути и выходы проектируемых частей зданий отвечают требованиям ст. 53, 89 Федерального закона от 22 июля 2008 года № 123-ФЗ, СП 1.13130.

Эвакуация изпомещений предусматривается непосредственно наружу.
На объекте выполнены следующие системы противопожарной защиты:

- установка автоматической пожарной сигнализации;
- система оповещения и управления эвакуацией людей при пожаре. -1-го типа.

Здание Распределительной трансформаторной подстанчии (РТП) запроектировано II степени огнестойкости, класса конструктивной пожарной опасности С0.

Класс функциональной пожарной опасности здания Ф5.1.
Здание отнесено категории В по взрывопожарной и пожарной опасности.

Пределы огнестойкости и классы пожарной опасности строительных конструкций предусмотрены в соответствии со ст. 87, табл. 21, 22 Федерального закона от 22 июля 2008 года № 123-ФЗ и соответствуют принятой степени огнестойкости и классу конструктивной пожарной опасности.

Эвакуационные пути и выходы проектируемых частей зданий отвечают требованиям ст. 53, 89 Федерального закона от 22 июля 2008 года № 123-ФЗ, СП 1.13130.

Эвакуация изпомещений предусматривается непосредственно наружу.
На объекте выполнены следующие системы противопожарной защиты:

- установка автоматической пожарной сигнализации;
- система оповещения и управления эвакуацией людей при пожаре. -2-го типа.

Для рассматриваемого комплекса проектом предусмотрены и другие противопожарные мероприятия, изложенные в разделе «Мероприятия по обеспечению пожарной безопасности».

4.10. Проект организации дорожного движения.

Проектом предусмотрена установка технических средств организации дорожного движения (ТСОДД) на период строительства. Место проведения работ расположено на внутренней территории с заездом транспорта с Кутузовского шоссе и пожарным выездом на дорогу в деревни Рузино. При строительстве объекта работы ведутся без занятия проезжей части Кутузовского шоссе. Исключен отстой транспорта в границах зоны проведения работ. На территории строительства объекта скорость ограничена до 20 км/ч с помощью знаков 5.31 и 5.32 . Ширина временных дорог принята не менее 6,0 м при организации двухстороннего проезда. При ведении работ вблизи пешеходных дорожек устанавливаются пешеходные галереи. Дорожные знаки устанавливаются в соответствии с ГОСТ Р 52289-2004 и ВСН 37-84. Дислокация всех запроектированных объектов и дорожных знаков, а также основные геометрические размеры, приведены в схемах организации дорожного движения.

Проектом предусмотрена установка технических средств организации дорожного движения (ТСОДД) на период эксплуатации объекта. Место проведения работ расположено на внутренней территории с заездом транспорта с Кутузовского шоссе. Для транзитного движения внутри микрорайона устраивается окружная дорога (квартальный проезд). Участок окружной дороги имеет 2-3 полосы движения шириной 3,5 м с организацией одностороннего движения. Ширина дворовых проездов составляет 6,0 м. Проект организации дорожного движения на период эксплуатации выполнен на основании схемы транспортного обслуживания ГУП НИиПИ Генплана г. Москвы. Скорость движения ограничена до 20 км/ч с помощью знаков 5.21 и 5.22. Пешеходные переходы наносятся бело-желтым термопластиком. Дорожные знаки 5.19 .1 и 5.19 .2 устанавливаются с желтозеленой каймой. В границах населенных пунктов устанавливаются дорожные знаки 5.23 и 5.24.1. На участках кривых с радиусом в плане 50 м снижена скорость до 30 км/ч. Разметка наносится в соответствии с ГОСТ Р 52289-2004 и ГОСТ Р 51256-2011. Дорожные знаки устанавливаются II-ого типоразмера в соответствии с ГОСТ Р 52289-2004. Дислокация всех запроектированных объектов и дорожных знаков, а также основные геометрические размеры, приведены в схемах организации дорожного движения.

4.11. Перечень мероприятий по обеспечению доступа инвалидов к объекту

Согласно заданию на разработку проектной документации, согласованного заместителем Начальника Солнечногорского управления социаль-

ной защиты населения и предусматривает:
Организачия безбарьерной средьь на прилегающей территории ширина тротуаров принята не менее 1,80 м, продольный уклон - не более 5%, поперечный - $1-2 \%$;

места съездов с тротуара на проезжую часть имеют понижение бортового камня или локальный пандус;

высота бортового камня в местах пересечения тротуаров с проезжей частью, а также перепад высот бордюров, примыкающих к путям пешеходного движения, не превышает 0,015 м;

покрытия пешеходных дорожек, тротуаров и пандусов выделены контрастным цветом и имеют шероховатую поверхность;

на путях движения инвалидов установлены сигнальные указатели и информационные щиты, столбы освещения выделены разметкой «зебра»;

установка скамеек для отдыха около входных групп и на территории благоустройства;

контрастная окраска декоративных ограждений, выполняющих направляющую функцию, окраска контрастным цветом малых форм благоустройства.

Вьделение маииномест для автотранспорта маломобильньх групп населения - в соответствии с заданием на проектирование предусмотрено выделение:

не менее 10% машиномест для объектов обслуживания - 6 машиноместа на открытой автостоянке;

из расчета обеспечения машиноместами не менее 50% расчетного количества специализированных квартир для маломобильных групп населения предусмотрено 12 машиномест из них:

для автомобилей маломобильных групп населения группы М4 предусмотрено не менее 5\%-10 машиномест;

для автомобилей маломобильных групп населения группы M1 - M3 предусмотрено 2 машиномест;

места для стоянки автотранспортных средств инвалидов располагаются на открытых автостоянках и в многоярусной открытой автостоянке Кориус III. 15 (рассматривается отдельно);

места для стоянки автотранспортных средств инвалидов на открытых автостоянках располагаются вблизи входа, не далее 50 м для посетителей нежилых помещений цокольных и первых этажей, и не далее 100 м от входов в жилые части зданий;

машиноместа для маломобильных групп населения выделяются разметкой и обозначаются специальными символами;

размеры зоны для парковки автомобиля маломобильных групп населения группы $\mathrm{M} 4-6,00 \times 3,60 \mathrm{~m}$.

Обеспечение безбарьерной средьт при входах - для маломобильных групп населения в жилых корпусах IV.03, IV.05 u IV.06-IV.09 доступны входы в общественные помещения 1 этажа и входы в жилую часть здания;

в здание дошкольной образовательной организации Корnyc IV. 10 доступен главный вход в здание:

входы в жилую и нежилую часть зданий осуществляется с уровня тротуара, входные площадки защищены навесами и имеют водоотвод и наружное освещение;

входы в здания оборудованы распашными дверями, шириной не менее 1,20 м и не менее 0,90 м (из помещений с числом находящихся в нем не более 15 человек) с перепадом порогов не более 14 мм для возможности входа в них инвалидов на креслах-колясках;

на входах в жилую часть здания предусмотрены домофоны, имеющие следующие функции:

- для доступности слепым и слабовидящим:
- звуковое подтверждение нажатия кнопок на блоке вызова и посылке сигнала вызова абоненту;
- речевое сопровождение выполнения команд работы домофона с громкостью по санитарным нормам;
- звуковой сигнал при открывании двери, на время отключения электромагнитного замка.
- для доступности глухим и слабослышащим, на светодиодном дисплее блока вызова домофона на входе в подъезд отображаются:

при наборе номера квартиры - набирается номер;
при открывании входной двери - ОТКР или OPN;
при ошибке набора или не доступности абонента - ОШИБКА или ERR.

Время разблокирования домофона замка входной двери, после передачи сигнала на открытие двери, регулируется в диапазоне от 10 до 30 секунд.

Обеспечение безбарьерной средьь внутри здания - для маломобильных групп населения в жилых корпусах IV.03, IV.05 u IV.06-IV.09 доступны общественные помещения 1 этажа и жилая часть зданий; здание дошкольной образовательной организации Kopnyc IV.10:

глубина пространства для маневрирования кресла-коляски перед дверями при открывании на себя $-2,20 \mathrm{~m}$;

диаметр зоны для самостоятельного разворота на 90 и 180° инвалида на кресле-коляске принят в соответствии с СП 59.13330.2012 - не менее 1,20 и 1,40 м соответственно;

ширина пути движения в коридорах в чистоте не менее: при движении кресла-коляски в одном направлении $-1,50 \mathrm{~m}$ (с локальными заужениями до 1,40 у шахт отопления), при встречном движении (в вестибюлях и холлах) $-1,8$ м;

установка информирующих указателей, табличек, предупреждающих знаков;

краевые ступени лестничных маршей выделены цветом или фактурой;
в жилой части для доступа к квартирам для маломобильных групп населения предусмотрен подъемник открытого типа;

доступ маломобильных групп населения не предусмотрен - в миниофисы, в которых не предусмотрено общественное обслуживание населения и на второй уровень всех двухуровневых офисов.

Устройство с/узлов для маломобильных групп населения предусмотрено в корпусах IV.03, IV. 05 и IV.06-IV. 09 в каждом общественном помещении при расчетной продолжительности нахождения посетителя 60 мин и более (кафе, отдельные офисы с возможностью посещения), в здании дошкольной образовательной организации Kopnyс IV. 10 на 1 этаже:

с/узел с размерами кабины не менее $1,65 \times 1,80$ м;
дверные проемы проектируются шириной 0,90 мм;
предусматривается установка кнопки аварийного вызова;
монтируются опорные поручни у унитаза и раковины, крючки для костылей, направляющие поручней контрастных цветов или тактильные полосы от входа к унитазу;

обеспечение пространства для размещения и маневрирования креслаколяски $1,40 \times 1,40 \mathrm{~m}$;

маркировка помещения дублируется выпуклыми символами или азбукой Брайля.

Лифты для маломобильньх групп населения предусмотрены в жилых корпусах IV.03, IV. 05 и IV. 06 - IV. 09 и в здании дошкольной образовательной организации Kорпус IV.10:

кабины лифтов, предназначенных для пользования инвалидом на кресле-коляске, имеет внутренние размеры не менее: ширина - 1,1 м, глубина $-2,1 \mathrm{~m}$, с шириной дверного проема не менее 0,90 м;

в лифте предусмотрена система внутренней связи пассажира с диспетчерским пунктом и размещена в зоне досягаемости инвалида в креслеколяске и расположена на высоте не более 1,20 м от пола кабины;

кабины лифтов оборудуются поручнями на одной из стен кабины, на высоте $0,90 \mathrm{~m}$; расстояние между стеной кабины и предназначенной для рук частью поручня должно быть не менее 35 мм;

у каждой двери лифта, предназначенного для инвалидов, устанавливаются тактильные указатели уровня этажа, напротив выхода из таких лифтов на высоте 1,5 м расположено цифровое обозначение этажа размером не менее 0,1 м, контрастное по отношению к фону стены;

лифты оборудуются световой и звуковой информирующей сигнализацией.

Пожаробезопасные зоныь предусмотрены в лифтовых холлах на первых этажах секций, в которых размещены квартиры для маломобильных групп населения в корпусах IV. 03 и IV. 05 и в здании дошкольной образовательной организации Kopnyc IV. 10 на 2 и 3 этажах:

площади пожаробезопасных зон рассчитаны на всех инвалидов, оставшихся на этаже;

пожаробезопасная зона - незадымляемая, отделена от других помещений и примыкающих коридоров противопожарными преградами;

материалы, применяемые для отделки стен, потолков и покрытий пожаробезопасных зон, предусмотрены негорючими;

двери в пожаробезопасную зону предусмотрены противопожарными и самозакрывающимися с уплотнениями в притворах.

Зоныг обслуживания - в залах предприятий общественного питания предусмотрено 2 места для МГН на креслах-колясках (5\% от мест в зале):

места для инвалидов располагаются в доступной и не проходной зоне зала, вблизи от входов, приспособленных для прохода МГН;

около столов предусмотрено свободное пространство не менее $0,9 \times 1,5$ м, и зона для самостоятельного разворота инвалида на кресле-коляске диаметром не менее 1,40 м;

в зонах обслуживания предусмотрено понижение отдельных окон, прилавков и стоек до уровня 0,70 м.

использование универсальных кассовых терминалов с возможностью обслуживания инвалидов (один терминал из общего количества) - высота расположения поверхности прилавков кассовых терминалов - 0,8 м от пола.

Квартирьл для МГН - предусмотрено 22 квартиры в корпусах IV.03, IV.05:

квартиры расположены на первых этажах корпусов на отм. 0,00 ;
ширина межквартирного коридора $1,5 \mathrm{~m}$ с локальными заужениями до 1,4m;

входные двери в квартирах приняты шириной 0,90 м в чистоте; межкомнатные двери и двери в с/узлы - шириной $0,80 \mathrm{~m}$ в чистоте;

планировка обеспечивает пространство для размещения и маневрирования кресла-коляски, с/узлы обеспечивают возможность использования маломобильными группами населения;

глубина лоджий $-1,40 \mathrm{~m}$;
в квартире для инвалида предусмотрены тревожные кнопки, установка в жилых комнатах и кухнях квартир автономных дымовых пожарных извещателей для оповещения при пожаре.

4.12. Требования к обеспечению безопасной эксплуатации объектов капитального строительства

Раздел содержит:

- требования к способам проведения мероприятий по техническому обслуживанию для обеспечения безопасности строительных конструкций, инженерных сетей и систем;
- минимальную периодичность осуществления проверок, осмотров, освидетельствований состояния и текущих ремонтов строительных конструкций, оснований, инженерных сетей и систем в процессе эксплуатации;
- сведения о значениях эксглуатационных нагрузок на строительные конструкции, инженерные сети и системы, которые недопустимо превышать в процессе эксплуатации;
- сведения о размещении скрытых электропроводок, трубопроводов и иных устройств, повреждение которых может привести к угрозе причинения вреда;
- требования к эксплуатации технических средств и систем, служащих для обнаружения взрывных устройств, оружия боеприпасов;
- сведения о периодичности осмотров и контрольных проверок (техническое обслуживание, восстановительные работы и т.д.) строительных конструкций (в том числе: огнезащитных покрытий, наружных пожарных лестниц, ограждений на кровле и т.д.) и систем инженерно-технического обеспечения (автоматического пожаротушения, внутреннего противопожарного водоснабжения, противодымной защиты, оповещения и управления эвакуацией людей при пожаре, автоматической пожарной сигнализации, аварийного освещения и т.д.); мероприятия по соблюдению правил противопожарного режима в Российской Федерации, утвержденными постановлением Правительства РФ от 25 апреля 2012 года №390;
- сведения о примерном сроке службы здания на основании ГОСТ Р 54257-2010-50 лет.

5. Сведения об оперативных изменениях, внесённых заявителем в процессе проведения экспертизы

По разделу «Инэненерно-геологические изьскания»:
Технический отчет, разработанный ООО «Гео Плюс Проект» в 2013 году:Представлена программа на выполнение инженерно-геологических изысканий.

Приведены коэффициенты фильтрации грунтов.
Уточнена нормативная глубина сезонного промерзания и степень морозной пучинистости грунтов.

Представлена оценка территории в отношении проявления карстовосуффозионных процессов.

Технические отчетьи, разработанные ООО «Моспроект 7» в 2014 году:Приведены коэффициенты фильтрации грунтов.

Представлена информация о коррозионной агрессивности подземных вод к бетону.

Уточнена степень морозной пучинистости песков средней крупности (ИГЭ-3, ИГЭ-3a).

Представлено письмо Застройщика ООО «Кутузовское-1» от 02 сентября 2015 года № КТЗ 1/и-0382 о выполнении вертикальной планировки территории со значительным изменением рельефа (с засыпкой прилегающего склона до 8,0 м) до начала строительных работ на участке строительства инженерных сооружений.

В разделе «Схема планировочной организачии земельного участка»:
Технико-экономические показатели по этапам приведены в соответствие.

На ситуационном плане обозначена граница зоны санитарной охраны водозаборного узла ВЗУ.

Откорректирован план организации рельефа по проекту водозаборного узла ВЗУ.

В разделе «Энергоэффективность»:
Раздел дополнен техническими свидетельствами на фасадные системы облицовки, сертификатами соответствия на применяемые материалы, протоколами испытаний на светопрозрачные конструкции.

В разделе «Система электроснабжения»:
Внесены изменения в раздел силовое электрооборудование.
Уточнен тип применяемых кабелей.
Внесены изменения в принципиальные однолинейные схемы.
Уточнена нагрузка на ВРУ.
Представлена структурная схема электроснабжения объекта.
В разделе «Системы водоснабжения и водоотведения»:
Представлен план сетей М 1:500 на геоподоснове.
Обосновано принятое проектом решение о присоединении к напорным трубопроводам КНС д. Брехово

Представлен проект насосной станции.
Представлены технико-экономические показатели (паспорт) проекта.
Представлена схема сброса очищенных стоков в реку Горетовка, согласованная с администрацией МОСП «Кутузовское». Уточнена очередность строительства.

Указана концентрация загрязнений в исходной воде.
Указано, на каком основании принята производительность насосных установок и установки обезжелезивания, емкость резервуаров чистой воды.

У пожарных кранов предусмотрена установка диафрагм.
Предусмотрены сети производственной канализации от мини-кафе, магазина продовольственных товаров.

Предусмотрено резервирование ГВС для мини-кафе и продовольственного магазина.

Дополнена схема насосной станции хозяйственно-питьевого и противопожарного водоснабжения.

Система внутренних водостоков в автостоянке выполнена с учетом требований п. 6.1.2 СП 113.13330.
B разделах «Отопление, вентилячия и кондчұионирование воздуха, тепловые сети»:

Представлены чертежи этажей зданий, где расположены помещения ИТП, с указанием путей эвакуацию из помещения;

Представлены напоры на вводах в ИТП и указаны на чертежах;
Представлены отсутствующие технические условия эксплуатирующей организации;

Представлены расчеты по ГОСТ 12.1.003, ГОСТ 12.1.012 и СНиП II-12-77 в зданиях со встроенными тепловыми пунктами для зданий детских учреждений по звуко-шумо-вибрационой безопасности;

Техническое задание (ТЗ) Заказчика на разработку проектных решений раздела ОВ включено в состав документации.

Откорректирован перечень исходных данных. Исключены ссылки на территориальные нормы.

Все пункты, изложенные в подразделе Противопожарные мероприятия, применяемые к системам общеобменной вентиляции привязаны к конкретным помещениям проектируемого здания.

Приведены мероприятия по спуску воды и удалению воздуха. Приведена расстановка компенсаторов. Приведены узлы подключения стояков.

Не смотря на то, что стоимость решения, принятого в проекте решения по поэтажным гребенкам в 1,5 выше, чем решение с установкой общей пары балансировочных клапанов на поэтажной гребенке, заказчик принципиально согласен с данным решением.

Приведено описание принятых схем вентиляции ИТП.
Отопительные приборы ДОО закрыты решетками.
При разработке жилого комплекса «Кутузово» 1 этапа 1-ой очереди строительства, был рассмотрен вариант установки вентиляторов непосредственно в помещении кладовых, ИТП и встроенных помещений административного назначения с выбросом на фасад. Проектом по согласованию с Заказчиком принято решение переместить установку вентиляторов данных помещений на кровлю.

Из текстовой части исключено описание организации притока в жилую часть периодическим проветриванием.

Увязка расчетного расхода для разных этажей производится жалюзийными решетками типа PP , также вентблоки сконструированы таким образом, что пришли к минимальному количеству вытяжных каналов (сборный - один, попутчики минимальной длины, но не менее 2 м).

Для интенсификации вытяжки устанавливаются дефлекторы.
Также, в целях повышения эффективности работы вентиляции на последнем этаже зданий в кухнях, санитарно-гигиенических помещениях, кладовых предусмотрены самостоятельные вытяжные каналы с возможностью установки на них вентиляторов индивидуального пользования.

По заверению проектной организации расстояние между вытяжными оголовками и стенами более высоких секций достаточно большое, чтобы не препятствовать работе естественной вентиляции.

Расчеты систем противодымной защиты разработаны и представлены Башни и многосекционные дома имеют один пожарный отсек, пояснительная записка исправлена.

B разделе «Сети связи» дополнительно истребованы, предоставлены и включены в состав проектной документации:

- согласование проектной документации с заказчиком;
- проектные решения по устройству сети этажного оповещения для жилых частей домов, сетей объектового оповещения для ДОО и подземной автостоянки;
- проектные решения по устройству тревожной кнопки с выводом сигнала от ДОО на пульт ПЩН 02 по радиоканалу;
- проектные решения по системе передачи сигнала «Пожар» от ДОО на пульт «01» по радиоканалу в автоматическом режиме;
- план трассы внутриплощадочной телефонной канализации, выполненный на действующем инженерно-топографическом плане (геоподоснове);
- схемы внутренних сетей связи жилых корпусов секционного типа, откорректированные в части приведения в соответствие с принятыми ар-хитектурно-планировочными решениями и Таблице 1. ТЭП ОС1/Э1 в части этажности и количества секций;
- схемы внутренних сетей связи ДОО, откорректированные в части приведения в соответствие с принятыми архитектурно-планировочными решениями и Таблице 1. ТЭП ОС1/Э1 в части этажности;
- схемы автоматической пожарной сигнализации, откорректированные в части исключения разночтения между текстовой частью и схемами в части типов извещателей устанавливаемых в прихожих квартир и во внеквартирных коридорах;
- схемы внутриплощадочной внутриплощадочной телефонной канализации, откорректированные в части приведения в соответствие с п. 17. и п. 22 технических условий;
- схемы прокладки внутриплощадочных оптических кабелей.

В разделе «Технологические решения»:
Представлено технологическое задание на разработку ДОО, согласованное в установленном порядке.

Уточнен штат персонала в составе с режимом работы ДОО.
Представлено размещение постирочной на общем плане подвала.
Выполнена группа от 1 до 3 лет -15 человек.
Выполнено помещение раздачи из горячего цеха.
В разделе «Перечень мероприятий по охране окружающей средьт»:
Представлена дендрологическая часть проекта.
Уточнены и откорректированы разногласия и опечатки по всему разделу.

Откорректирован расчет объемов образования отходов на период строительства и на период эксплуатации.

Выполнена корректировка расчетов выбросов загрязняющих веществ в атмосферу на период строительства и на период эксплуатации.

Выполнена корректировка раздела на период эксплуатации и строительства согласно уточненным проектным материалам.

Оченка документачии на соответствие санитарноэпидемиологическим нормам и правилам

Откорректирована планировка помещений пищеблока ДОО для организации раздачи блюд на 1-ом этаже (пом. 1128) с учетом поточности.

Состав помещений кафе на 32 посадочных места откорректирован, предусмотрено помещение персонала (пом. 12).

В разделе «Перечень мероприятий по обеспечению пожарной безопасности»:

Предусмотрены сквозные проходы через лестничные клетки в зданиях и сооружениях на расстоянии не более 100 метров один от другого.

Подвальный этаж разделяется по секциям противопожарными перегородками 1-го типа, заполнение в противопожарных перегородках предусмотрено противопожарными дверями 2-го типа.

Из каждой секции подвала предусмотрено не менее 2-х эвакуационных выхода непосредственно наружу.

В каждой секции подвального этажа в жилых домах запроектировано не менее 2 окон размерами менее $0,9 \times 1,2 \mathrm{~m} \mathrm{с} \mathrm{приямками}$.

При изменении конфигурации стен лестничных клеток, участки смещения и конструкции, на которые они опираются, выполняются с пределом огнестойкости не менее предела огнестойкости внутренних стен лестничных клеток.

Предусмотрено естественное освещение лестничных клеток на всех этажах, включая 1 -ый, с площадью остекления не менее 1,2 м 2.

Жилые помещения отделены от общественных помещений противопожарными перегородками 1-го типа и перекрытиями не ниже 3-го типа без проемов.

На первых и цокольных этажах, в местах расположения проемов выходов из лестниц типа Н2 и окон помещений на расстоянии менее 1,2 м, заполнение оконных проемов предусматривается в противопожарном исполнении с пределом огнестойкости не менее E30, наружная стена на данных участках предусматривается с глухой с пределом огнестойкости не менее E30.

Кладовые помещения категории B4, располагаемые в цокольных и подвальных этажах, отнесены к помещениям эксплуатирующей организации.

Декоративный воздухопроницаемый экран устанавливается с учетом беспрепятственного подъема личного состава подразделений пожарной охраны и пожарной техники на кровлю здания.

Проходы до машинных отделений лифтов предусмотрены по участкам кровли, выполненной из негорючих материалов. Ширина прохода составляет не менее 1,4 м.

Групповые ячейки со спальными местами и палаты в блоке медицинских помещений (ДОО) выделены стенами с пределом огнестойкости не ниже REI 45. Входные двери групповых ячеек предусматриваются с уплотнением в притворах.

В помещениях для одновременного пребывания более 10 человек (ДОО) предусмотрено не менее двух эвакуационных выходов. Эвакуационные выходы расположены рассредоточено в соответствии с требованиями 4.2.4 СП 1.13130.

Коридоры (ДОО), соединяющие лестничные клетки, разделены противопожарными перегородками не ниже 2 -го типа из условия обеспечения выхода из каждой групповой ячейки в разные отсеки коридора.

Ширина эвакуационных выходов из помещений (ДОО) принята не менее 1,2 м при числе эвакуирующихся более 15 человек.

При открывании дверей, выходящих на лестничную клетку, исключено уменьшение ширины лестничных площадок.

Ширина коридоров с доступных для МГН принята не менее 1,5 м.
Вход в лифт на уровне подвального этажа предусмотрен через там-бур-шлюз (лифтовый холл) с подпором воздуха при пожаре.

Лифт для перевозки МГН запроектирован с требованиями как к лифту для перевозки пожарных подразделений и обеспечен подпором воздуха в шахту лифта.

Площадь пожаробезопасных зон принята в соответствии с расчетом.
Лестничные клетки обеспечены естественным освещением через оконные проемы в наружных стенах площадью не менее 1,2 м 2.

Предусмотрен подпор воздуха в зоны безопасности системами с учетом требований п. 7.17e СП 7.13130.

В разделе «Мероприятия по обеспечению доступа инвалидов»:
Указаны нормативные документы, используемые при проектировании.

Представлено описание квартир для маломобильных групп население.
Указано количество и места для маломобильных групп населения в кафе в соответствии с п. 7.4.5-7.4.7 СП 59.13330.2012.

Указаны характеристики торгового оборудования используемого в торговых помещениях маломобильными группами населения в соответствии с п. 7.4.1-7.4.4 СП 59.13330.2012.

6. Выводы по результатам рассмотрения

6.1. Выводы о соответствии результатов инженерных изысканий

По разделу «Инженерно-геологические изыскания»:
Результаты инженерно-геологических изысканий соответствуют требованиям технических регламентов.

По разделу: «Инженерно-геодезические изыскания»:
Результаты инженерно-геодезических изысканий соответствуют требованиям технических регламентов.

6.2. Выводы в отношении технической части проектной документации

Проектная документация выполнена в соответствии с Постановлением Правительства РФ от 16 февраля 2008 года № 87 «О составе разделов проектной документации и требованиях к их содержанию».

По разделу «Схема планировочной организаиии земельного участка»:
Проектная документация соответствует требованиям технических регламентов.

По разделу «Архитектурные решения»:
Проектная документация соответствует требованиям технических регламентов.

По разделу «Конструктивные решения»:
Проектная документация соответствует требованиям технических peгламентов и результатам инженерных изысканий.

По разделу «Энергоэффективность»:
Проектные решения в части тепловой защиты зданий и учета используемых энергетических ресурсов соответствуют требованиям технических регламентов.

По разделу «Система электроснабжения»:
Проектная документация соответствует требованиям технических регламентов.

По разделу «Система водоснабжения и водоотведения»:
Проектная документация соответствует требованиям технических регламентов.

По разделам «Отопление, вентиляция и кондиционирование воздуха, тепловые сети»:

Проектная документация соответствует требованиям технических регламентов.

По разделу «Сети связи»:
Проектная документация соответствует требованиям технических регламентов.

В разделе «Технологические решения»:
Технологические решения соответствуют требованиям нормативной документации, они предусматривают достаточный уровень организации работы и создание нормируемых условий для персонала и посетителей.

По разделу «Проект организачии строительства»
Проектная документация соответствует требованиям технических регламентов.

По разделу «Перечень мероприятий по охране окружающей среды»
Проектная документация соответствует экологическим и санитарноэпидемиологическим требованиям.

По разделу «Противопожарные мероприятия»:
Проектная документация соответствует требованиям технических регламентов, нормативных документов по пожарной безопасности.

По разделу: «Мероприятия по обеспечению доступа инвалидов»:
Проектные решения обеспечивают беспрепятственный доступ маломобильных групп населения по участку и в помещения, рассчитанные на пребывание посетителей.

7. Общие выводы

Проектная документация на строительство жилого 1 очередь 2 и 4 этапы (жилые дома IV.03, IV. 05 - IV.09, детское дошкольное учреждение IV.10; внутриплощадочные инженерные сети и сооружения) по адресу: Московская область, Солнечногорский муниципальный район, сельское поселение Кутузовское, д. Рузино соответствует требованиям технических регламентов и результатам инженерных изысканий.

Эксперт

(конструктивные решения, аттестат 2.1.3. № МС-Э-35-2-3271)

Эксперт

Н.В. Мухина
(теплогазоснабжение, водоснабжение, водоотведение, канализация, вентиляция и кондиционирование, аттестат 2.2 № МР-Э-2-2-0197)

Эксперт
(электроснабжение, связь, сигнализация, системы автоматизации, аттестат 2.3 № МР-Э-2-2-0217)

Эксперт
(электроснабжение и электропотребление, аттестат 2.3.1 № ГС-Э-28-2-0654)

Эксперт
(водоснабжение, водоотведение и канализация аттестат 2.2.1 № ГС-Э-15-2-0449)

Эксперт
(Теплоснабжение, вентиляция и кондиционирование, аттестат 2.2.2. № ГС-Э-13-2-0407)

Эксперт
(системы автоматизации, связи и сигнализации, аттестат 2.3.2. МР-Э-41-2-0152)

С.О. Яценко

Продолжение подписного листа

Эксперт

(организация строительства, аттестат 2.1.4 № МС-Э-13-2-5355)

Эксперт

(охрана окружающей среды, санитарно-эпидемиологическая безопасность, аттестат 2.4 № ГС-Э-40-2-1656)

Эксперт

(санитарно-эпидемиологическая безопасность, аттестат 2.4.2 № МР-Э-34-2-0862)

Эксперт

(пожарная безопасность, аттестат 2.5. № ГС-Э-59-2-2015)

Эксперт
(инженерно-геологические изыскания аттестат 1.2 № ГС-Э-70-1-2249)

Эксперт
(инженерно-геодезические изыскания аттестат 1.2 № ГС-Э-59-1-2017)

B.E. Мышинский

Г.А. Раков

[^0]: 4.4. Перечень мероприятий по обеспечению соблюдения требований энергетической эффективности и требований оснащенности зданий, строений, сооружений приборами учета используемых энергетических ресурсов

 Предусмотрено утепление наружных ограждающих конструкций:

 - наружных стен корпусов IV.03, IV. 05 - IV. 09 и дошкольной образовательной организачии $I V .10$ - минераловатными плитами плотностью верхнего слоя не менее 90 кг $/ \mathrm{m}^{3}$ общей толщиной 160 мм (толщиной 170 мм в стенах выходов на кровлю) в составе сертифицированной навесной фасад-

